New Video: Quantum Entanglement Explained

quantum-entanglement1If you’re like most people, the concept of quantum entanglements confuses and perplexes you. But considering its important to quantum science, the future of computing and (maybe, just maybe) space travel, it’s something we should all strive to understand. Luckily, this educational video produced by PHD Comics, and narrated by physicists Jeff Kimble and Chen-Lung Hung, explains it in easy-to-understand terms.

To break it down succinctly, quantum entanglement is the unusual behavior where elementary particles become linked so that when something happens to one, something happens to the other; no matter how far apart they are. This bizarre behavior of particles that become inextricably linked together is what Einstein supposedly called “spooky action at a distance.”

Understanding how this works may very well unlock the mysteries of the universe, shedding light on the unusual behavior of black holes, how gravity interacts with the other fundamental forces and yielding a Grand Unifying Theory/Theory of Everything (TOE)- and even let us circumvent “natural” barriers like the speed of light. So enjoy the video, and be sure to listen carefully. Simplified or not, this is still some pretty heavy stuff!


Source: universetoday.com

Biggest Scientific Breakthroughs of 2013

center_universe2The new year is literally right around the corner, folks. And I thought what better way to celebrate 2013 than by acknowledging its many scientific breakthroughs. And there were so many to be had – ranging in fields from bioresearch and medicine, space and extra-terrestrial exploration, computing and robotics, and biology and anthropology – that I couldn’t possibly do them all justice.

Luckily, I have found a lovely, condensed list which managed to capture what are arguably the biggest hits of the year. Many of these were ones I managed to write about as they were happening, and many were not. But that’s what’s good about retrospectives, they make us take account of things we missed and what we might like to catch up on. And of course, I threw in a few stories that weren’t included, but which I felt belonged.

So without further ado, here are the top 12 biggest breakthroughs of 2013:

1. Voyager 1 Leaves the Solar System:

For 36 years, NASA’s Voyager 1 spacecraft has travelling father and farther away from Earth, often at speeds approaching 18 km (11 miles) per second. At a pace like that, scientists knew Voyager would sooner or later breach the fringe of the heliosphere that surrounds and defines our solar neighborhood and enter the bosom of our Milky Way Galaxy. But when it would finally break that threshold was a question no one could answer. And after months of uncertainty, NASA finally announced in September that the space probe had done it. As Don Gurnett, lead author of the paper announcing Voyager’s departure put it: “Voyager 1 is the first human-made object to make it into interstellar space… we’re actually out there.”

voyager12. The Milky Way is Filled with Habitable Exoplanets:

After years of planet hunting, scientists were able to determine from all the data gathered by the Kepler space probe that there could be as many as 2 billion potentially habitable exoplanets in our galaxy. This is the equivalent of roughly 22% of the Milky Way Galaxy, with the nearest being just 12 light years away (Tau Ceti). The astronomers’ results, which were published in October of 2013, showed that roughly one in five sunlike stars harbor Earth-size planets orbiting in their habitable zones, much higher than previously thought.

exoplanets23. First Brain to Brain Interface:

In February of 2013, scientists announced that they had successfully established an electronic link between the brains of two rats. Even when the animals were separated by thousands of kms distance, signals from the mind of one could help the second solve basic puzzles in real time. By July, a connection was made between the minds of a human and a rat. And by August, two researchers at the Washington University in St. Louis were able to demonstrate that signals could be transmitted between two human brains, effectively making brain-to-brain interfacing (BBI), and not just brain computer interfacing (BCI) truly possible.

brain-to-brain-interfacing4. Long-Lost Continent Discovered:

In February of this year, geologists from the University of Oslo reported that a small precambrian continent known as Mauritia had been found. At one time, this continent resided between Madagascar and India, but was then pushed beneath the ocean by a multi-million-year breakup spurred by tectonic rifts and a yawning sea-floor. But now, volcanic activity has driven the remnants of the long-lost continent right through to the Earth’s surface.

Not only is this an incredibly rare find, the arrival of this continent to the surface has given geologists a chance to study lava sands and minerals which are millions and even billions of years old. In addition to the volcanic lava sands, the majority of which are around 9 million years old, the Oslo team also found deposits of zircon xenocryst that were anywhere from 660 million to 1.97 billion years old. Studies of these and the land mass will help us learn more about Earth’s deep past.

mauritia5. Cure for HIV Found!:

For decades, medical researchers and scientists have been looking to create a vaccine that could prevent one from being infected with HIV. But in 2013, they not developed several vaccines that demonstrated this ability, but went a step further and found several potential cures. The first bit of news came in March, when researchers at Caltech demonstrated using HIV antibodies and an approach known as Vectored ImmunoProphylaxis (VIP) that it was possible to block the virus.

Then came the SAV001 vaccine from the Schulich School of Medicine & Dentistry at Western University in London, Ontario, which aced clinical trials. This was punctuated by researchers at the University of Illinois’, who in May used the “Blue Waters” supercomputer to developed a new series of computer models to get at the heart of the virus.

HIV-budding-ColorBut even more impressive was the range of potential cures that were developed. The first came in March, where researchers at the Washington University School of Medicine in St. Louis that a solution of bee venom and nanoparticles was capable of killing off the virus, but leaving surrounding tissue unharmed. The second came in the same month, when doctors from Johns Hopkins University Medical School were able to cure a child of HIV thanks to the very early use of antiretroviral therapy (ART).

And in September, two major developments occurred. The first came from Rutgers New Jersey Medical School, where researchers showed that an antiviral foot cream called Ciclopirox was capable of eradicating infectious HIV when applied to cell cultures of the virus. The second came from the Vaccine and Gene Therapy Institute at the Oregon Health and Science University (OHSU), where researchers developed a vaccine that was also able to cure HIV in about 50% of test subjects. Taken together, these developments may signal the beginning of the end of the HIV pandemic.

hiv-aids-vaccine6. Newly Discovered Skulls Alter Thoughts on Human Evolution:

The discovery of an incredibly well-preserved skull from Dmanisi, Georgia has made anthropologists rethink human evolution. This 1.8 million-year old skull has basically suggested that our evolutionary tree may have fewer branches than previously thought. Compared with other skulls discovered nearby, it suggests that the earliest known members of the Homo genus (H. habilis, H.rudolfensis and H. erectus) may not have been distinct, coexisting species, but instead were part of a single, evolving lineage that eventually gave rise to modern humans.

humanEvolution7. Curiosity Confirms Signs of Life on Mars:

Over the past two years, the Curiosity and Opportunity rovers have provided a seemingly endless stream of scientific revelations. But in March of 2013, NASA scientists released perhaps the most compelling evidence to date that the Red Planet was once capable of harboring life. This consisted of drilling samples out of the sedimentary rock in a river bed in the area known as Yellowknife Bay.

Using its battery of onboard instruments, NASA scientists were able to detect some of the critical elements required for life – including sulfur, nitrogen, hydrogen, oxygen, phosphorus, and carbon. The rover is currently on a trek to its primary scientific target – a three-mile-high peak at the center of Gale Crater named Mount Sharp – where it will attempt to further reinforce its findings.

mt_sharp_space8. Scientists Turn Brain Matter Invisible:

Since its inception as a science, neuroanatomy – the study of the brain’s functions and makeup – has been hampered by the fact that the brain is composed of “grey matter”. For one, microscopes cannot look beyond a millimeter into biological matter before images in the viewfinder get blurry. And the common technique of “sectioning” – where a brain is frozen in liquid nitrogen and then sliced into thin sheets for analysis – results in  tissue being deformed, connections being severed, and information being lost.

But a new technique, known as CLARITY, works by stripping away all of a tissue’s light-scattering lipids, while leaving all of its significant structures – i.e. neurons, synapses, proteins and DNA – intact and in place. Given that this solution will allow researchers to study samples of the brains without having to cut them up, it is already being hailed as one of the most important advances for neuroanatomy in decades.


9. Scientists Detect Neutrinos from Another Galaxy:

In April of this year, physicists working at the IceCube South Pole Observatory took part in an expedition which drilled a hole some 2.4 km (1.5 mile) hole deep into an Antarctic glacier. At the bottom of this hole, they managed to capture 28 neutrinos, a mysterious and extremely powerful subatomic particle that can pass straight through solid matter. But the real kicker was the fact that these particles likely originated from beyond our solar system – and possibly even our galaxy.

That was impressive in and off itself, but was made even more so when it was learned that these particular neutrinos are over a billion times more powerful than the ones originating from our sun. So whatever created them would have had to have been cataclysmicly powerful – such as a supernova explosion. This find, combined with the detection technique used to find them, has ushered in a new age of astronomy.

antarctic_expedition

10. Human Cloning Becomes a Reality:

Ever since Dolly the sheep was cloned via somatic cell nuclear transfer, scientists have wondered if a similar technique could be used to produce human embryonic stem cells. And as of May, researchers at Oregon Health and Science University managed to do just that. This development is not only a step toward developing replacement tissue to treat diseases, but one that might also hasten the day when it will be possible to create cloned, human babies.

cloning

11. World’s First Lab Grown Meat:

In May of this year, after years of research and hundred of thousands of dollars invested, researchers at the University of Maastricht in the Netherlands created the world’s first in vitro burgers. The burgers were fashioned from stem cells taken from a cow’s neck which were placed in growth medium, grown into strips of muscle tissue, and then assembled into a burger. This development may prove to be a viable solution to world hunger, especially in the coming decades as the world’s population increases by several billion.

labmeat112. The Amplituhedron Discovered:

If 2012 will be remembered as the year that the Higgs Boson was finally discovered, 2013 will forever be remembered as the year of the Amplituhedron. After many decades of trying to reformulate quantum field theory to account for gravity, scientists at Harvard University discovered of a jewel-like geometric object that they believe will not only simplify quantum science, but forever alters our understanding of the universe.

This geometric shape, which is a representation of the coherent mathematical structure behind quantum field theory, has simplified scientists’ notions of the universe by postulating that space and time are not fundamental components of reality, but merely consequences of the”jewel’s” geometry. By removing locality and unitarity, this discovery may finally lead to an explanation as to how all the fundamental forces of the universe coexist.

amplutihedron_spanThese forces are weak nuclear forces, strong nuclear forces, electromagnetism and gravity. For decades, scientists have been forced to treat them according to separate principles – using Quantum Field Theory to explain the first three, and General Relativity to explain gravity. But now, a Grand Unifying Theory or Theory of Everything may actually be possible.

13. Bioprinting Explodes:

The year of 2013 was also a boon year for bioprinting – namely, using the technology of additive manufacturing to create samples of living tissue. This began in earnest in February, where a team of researchers at Heriot-Watt University in Scotland used a new printing technique to deposit live embryonic stem cells onto a surface in a specific pattern. Using this process, they were able to create entire cultures of tissue which could be morphed into specific types of tissue.

Later that month, researchers at Cornell University used a technique known as “high-fidelity tissue engineering” – which involved using artificial living cells deposited by a 3-D printer over shaped cow cartilage – to create a replacement human ear. This was followed some months later in April when a San Diego-based firm named Organova announced that they were able to create samples of liver cells using 3D printing technology.


And then in August, researchers at Huazhong University of Science and Technology were able to use the same technique create the world first, living kidneys. All of this is pointing the way towards a future where human body parts can be created simply by culturing cells from a donor’s DNA, and replacement organs can be synthetically created, revolutionizing medicine forever.

14. Bionic Machinery Expands:

If you’re a science buff, or someone who has had to go through life with a physical disability, 2013 was also a very big year for the field of bionic machinery. This consisted not only of machinery that could meld with the human body in order to perform fully-human tasks – thus restoring ambulatory ability to people dealing with disabling injuries or diseases – but also biomimetic machinery.

ArgusIIThe first took place in February, where researchers from the University of of Tübingen unveiled the world’s first high-resolution, user-configurable bionic eye. Known officially as the “Alpha IMS retinal prosthesis”, the device helps to restore vision by converted light into electrical signals your retina and then transmitted to the brain via the optic nerve. This was followed in August by the Argus II “retinal prosthetic system” being approved by the FDA, after 20 years of research, for distribution in the US.

Later that same month, the Ecole Polytechnique Federale de Lausanne in Switzerland unveiled the world’s first sensory prosthetic hand. Whereas existing mind-controlled prosthetic devices used nerve signals from the user to control the movements of the limb, this new device sends electrostimulus to the user’s nerves to simulate the sensation of touch.

prosthetic_originalThen in April, the University of Georgia announced that it had created a brand of “smart skin” – a transparent, flexible film that uses 8000 touch-sensitive transistors – that is just as sensitive as the real thing. In July, researchers in Israel took this a step further, showing how a gold-polyester nanomaterial would be ideal as a material for artificial skin, since it experiences changes in conductivity as it is bent.

15. 400,000 Year-Old DNA Confuses Humanity’s Origin Story:

Another discovery made this year has forced anthropologist to rethink human evolution. This occurred in Spain early in December, where a team from the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany recovered a 400,000 year-old thigh bone. Initially thought to be a forerunner of the Neanderthal branch of hominids, it was later learned that it belonged to the little-understood branch of hominins known as Denisovans.

Human-evoThe discordant findings are leading anthropologists to reconsider the last several hundred thousand years of human evolution. In short, it indicates that there may yet be many extinct human populations that scientists have yet to discover. What’s more, there DNA may prove to be part of modern humans genetic makeup, as interbreeding is a possibility.

The Future of Physics: Entanglements and Wormholes

worm_holeQuantum entanglements are one of the most bizarre aspects of quantum physics, so much so that Albert Einstein himself referred to it as “spooky action at a distance.” Basically, the concept involves two particles with each occupying multiple states at once. Until such time as one is measured, neither has a definite state, causing the other particle to instantly assume a corresponding state, even if they reside on opposite ends of the universe.

But what enables particles to communicate instantaneously – and seemingly faster than the speed of light – over such vast distances? Earlier this year, physicists proposed an answer in the form of “wormholes,” or gravitational tunnels. The group showed that by creating two entangled black holes, then pulling them apart, they formed a wormhole connecting the distant black holes.

quantum-entanglement1Now an MIT physicist has found that, looked at through the lens of string theory, the creation of two entangled quarks — the very building blocks of matter — simultaneously gives rise to a wormhole connecting the pair. The theoretical results bolster the relatively new and exciting idea that the laws of gravity that hold the universe together may not be fundamental, but may arise from quantum entanglement themselves.

Julian Sonner, a senior postdoc at MIT’s Laboratory for Nuclear Science and Center for Theoretical Physics, published the results of his study in the journal Physical Review Letters, where it appears together with a related paper by Kristan Jensen of the University of Victoria and Andreas Karch of the University of Washington. Already, the theory is causing quite the buzz for scientists and fans of sci-fi who would like to believe FTL is still possible.

quantum_field_theoryThis is certainly good news for scientists looking to resolve the fundamental nature of the universe by seeing how its discernible laws fit together. Ever since quantum mechanics was first proposed more than a century ago, the main challenge for physicists has been to explain how it correlates to gravity. While quantum mechanics works extremely well at describing how things work on the microscopic level, it remains incompatible with general relativity.

For years, physicists have tried to come up with a theory that can marry the two fields. This has ranged from proposing the existence of a subatomic particle known as the “graviton” or “dilaton”, to various Grand Unifying Theories – aka. Theory of Everything (TOE) – such as Superstring Theory, Loop Quantum Gravity, and other theoretical models to explain the interaction. But so far, none have proven successful.

gravity_well_cartography_2_by_lordsong-d5lrxwsA theory of quantum gravity would suggest that classical gravity is not a fundamental concept, as Einstein first proposed, but rather emerges from a more basic, quantum-based phenomenon. In a macroscopic context, this would mean that the universe is shaped by something more fundamental than the forces of gravity. This is where quantum entanglement could play a role.

Naturally, there is a problem with this idea. Two entangled particles, “communicating” across vast distances, would have to do so at speeds faster than that of light — a violation of the laws of physics, according to Einstein. In July, physicists Juan Maldacena of the Institute for Advanced Study and Leonard Susskind of Stanford University proposed a theoretical solution in the form of two entangled black holes.

big bang_blackholeWhen the black holes were entangled, then pulled apart, the theorists found that what emerged was a wormhole – a tunnel through space-time that is thought to be held together by gravity. The idea seemed to suggest that, in the case of wormholes, gravity emerges from the more fundamental phenomenon of entangled black holes. Following up on work by Jensen and Karch, Sonner has sought to tackle this idea at the level of quarks.

To see what emerges from two entangled quarks, he first generated entangled quarks using the Schwinger effect — a concept in quantum theory that enables one to create particles out of nothing. Sonner then mapped the entangled quarks onto a four-dimensional space, considered a representation of space-time. In contrast, gravity is thought to exist in the fifth dimension. According to Einstein’s laws, it acts to “bend” and shape space-time.

black_holeTo see what geometry may emerge in the fifth dimension from entangled quarks in the fourth, Sonner employed holographic duality, a concept in string theory. While a hologram is a two-dimensional object, it contains all the information necessary to represent a three-dimensional view. Essentially, holographic duality is a way to derive a more complex dimension from the next lowest dimension.

Using holographic duality, Sonner derived the entangled quarks, and found that what emerged was a wormhole connecting the two, implying that the creation of quarks simultaneously creates a wormhole between them. More fundamentally, the results suggest that gravity itself may emerge from quantum entanglement. On top of all that, the geometry, or bending, of the universe as described by classical gravity, may also be a consequence of entanglement.

quantum-entanglement3As Sonner put it in his report, the results are a theoretical explanation for a problem that has dogged scientists who quite some time:

There are some hard questions of quantum gravity we still don’t understand, and we’ve been banging our heads against these problems for a long time. We need to find the right inroads to understanding these questions… It’s the most basic representation yet that we have where entanglement gives rise to some sort of geometry. What happens if some of this entanglement is lost, and what happens to the geometry? There are many roads that can be pursued, and in that sense, this work can turn out to be very helpful.

Granted, the idea of riding wormholes so that we, as humans, can travel from one location in space to another is still very much science fiction, knowing that there may very well be a sound, scientific basis for their existence is good news for anyone who believes we will be able to “jump” around the universe in the near to distant future. I used to be one of them, now… I think I might just be a believer again!

USS_Enterprise_caught_in_artificial_wormhole-640x272Sources: web.mit.edu, extremetech.com

The Amplituhedron: Quantum Physics Decoded

amplutihedron_spanScientists recently made a major breakthrough that may completely alter our perceptions of quantum physics, and the nature of the universe itself. After many decades of trying to reformulate quantum field theory, scientists at Harvard University discovered of a jewel-like geometric object that they believe will not only simplify quantum science, but even challenge the notion that space and time are fundamental components of reality.

This jewel has been named the “amplituhedron”, and it is radically simplifying how physicists calculate particle interactions. Previously, these Interactions were calculated using quantum field theory – mathematical formulas that were thousands of terms long. Now, these interactions can be described by computing the volume of the corresponding amplituhedron, which yields an equivalent one-term expression.

theory_of_everythingJacob Bourjaily, a theoretical physicist at Harvard University and one of the researchers who developed the new idea, has this to say about the discovery:

The degree of efficiency is mind-boggling. You can easily do, on paper, computations that were infeasible even with a computer before.

This is exciting news, in part because it could help facilitate the search for a Grand Unifying Theory (aka. Theory of Everything) that manages to unify all the fundamental forces of the universe. These forces are electromagnetism, weak nuclear forces, strong nuclear forces, and gravity. Thus far, attempts at resolving these forces have run into infinities and deep paradoxes.

gravityWhereas the field of quantum physics has been able to account for the first three, gravity has remained explainable only in terms of General Relativity (Einstein’s baby). As a result, scientists have been unable to see how the basic forces of the universe interact on a grand scale, and all attempts have resulted in endless infinities and deep paradoxes.

The amplituhedron, or a similar geometric object, could help by removing two deeply rooted principles of physics: locality and unitarity. Locality is the notion that particles can interact only from adjoining positions in space and time, while unitarity holds that the probabilities of all possible outcomes of a quantum mechanical interaction must add up to one.

quantum_field_theoryThe concepts are the central pillars of quantum field theory in its original form, but in certain situations involving gravity, both break down, suggesting neither is a fundamental aspect of nature. As Nima Arkani-Hamed – a professor of physics at the Institute for Advanced Study in Princeton, N.J. and the lead author of the new work – put it: “Both are hard-wired in the usual way we think about things. Both are suspect.”

In keeping with this idea, the new geometric approach to particle interactions removes locality and unitarity from its starting assumptions. The amplituhedron is not built out of space-time and probabilities; these properties merely arise as consequences of the jewel’s geometry. The usual picture of space and time, and particles moving around in them, is a construct.

Photon_follow8And while the amplituhedron itself does not describe gravity, Arkani-Hamed and his collaborators think there might be a related geometric object that does. Its properties would make it clear why particles appear to exist, and why they appear to move in three dimensions of space and to change over time. This is because, as Bourjaily put it:

[W]e know that ultimately, we need to find a theory that doesn’t have [unitarity and locality]. It’s a starting point to ultimately describing a quantum theory of gravity.

Imagine that. After decades of mind-boggling research and attempts at resolving the theoretical issues, all existence comes down to a small jewel-shaped structure. I imagine the Intelligent Design people will have a field day with this, and I can foresee it making it into the new season of Big Bang Theory as well. Breakthroughs like this always do seem to have a ripple effect…

Source: simonsfoundation.org

News in Science: CERN Getting an Upgrade!

CERN_upgradeNot that long ago, the CERN laboratory announced that they had found the first evidence of the Higgs Boson. After this momentous discovery, many were left wondering what would be next for CERN and their instrument, the Large Hadron Collider. While they had confirmed that what they had found was a Higgs Boson, it might not necessarily be the Higgs Boson. Other such particles might exist, and questions about how these particles interact and explain the nature of the universe still need to be unlocked.

Well, it just so happens that this past April, the researchers who run the Large Hadron Collider (LHC) decided to take it offline so they could give it some long-awaited upgrades. These upgrades will take two years and cost a pretty penny, but once they are done, the LHC will be almost doubled in power and be able to do some pretty amazing things. First, they will be able to see if their Higgs Boson is the real deal, and not some random subatomic particle simply imitating its behavior.

Peter Higgs (who proposed the Higgs boson), hanging out at LHC’s CMS detector
Peter Higgs (who proposed the Higgs boson), at the LHC

After that, according to CERN, they will take on the next big step in their ongoing research, which will consist consist of testing the theory of supersymmetry. Having demonstrated the Standard Model of particle physics to be correct, which the existence of the Higgs Boson confirms, they are now seeking to prove or disprove the theory that seeks to resolve its hierarchy problems.

Originally proposed by Hironari Miyazawa in 1966, the theory postulates that in nature, symmetry exists between two elementary particles – bosons and fermions – which are partnered to each other. Not only does this theory attempt to resolve theoretical problems stemming from the Standard Model (such as how weak nuclear force and gravity interact), it is also a feature of Superstring Theory, which attempts to explain how all the forces of the universe coexist.

universe_expansionFor some time, scientists have been trying to ascertain how the four major forces of the universe  – electromagnetism, strong nuclear forces, weak nuclear forces, and gravity – interact. Whereas the first three can be explained through quantum theory, the fourth remains a holdout, explainable in terms of Einstein’s Theory of Relativity, but inconsistent with quantum physics. Because of this, scientists have long sought out the missing pieces of the puzzle, hoping to find the subatomic particles and relational forces that could explain all this.

A number of theories have emerged, such as Superstring and Loop Quantum Gravity, but testing them remains a very difficult process. Luckily, by the time the LHC comes back online in 2015, not only will the researchers at CERN be able to confirm that they have found the real Higgs Boson, they will also have a far better shot at unlocking the greater mysteries of the universe…

Exciting news, I just wish it didn’t take so long to upgrade the darn thing! At this rate, it could be decades before we get to see gravitons, the other bosons, or whatever the heck those subatomic particles are that hold the universe together. I don’t know about you, but I’m eager to see how it all works!

universe

Source: Extremetech.com