The Future of Transit: (More) Robotaxis and Podcars!

Robotaxi_2getthereIn the course of the past century, science fiction has provided us with many interesting visions of what the future of transportation will look like. And whereas not long ago, many of these seemed like hopeless fantasy – such as the failure of flying cars or robotic automated vehicles to become a reality by 2000  – recent years and developments have seen reality slowly catching up.

Case in point, last year, the European company named “2GetThere” installed a small fleet of automated podcars (aka. robotaxis) in the eco-friendly community of Masdar City. Similarly, the town of San Jose began work on the Personal Rapid Transit System – a series of on-call, point to point transit cars designed to replace the town’s system of taxis and buses, providing an environmentally friendly alternative to traditional mass transit.

London_podcarAnd most recently, the town of Milton Keynes – a sleepy city north of London – that is planning on conducting a podcar system trial run by 2015. Similar to the system at Heathrow Airport, which uses 21 on-call podcars on a  4 km (2.5 mile) stretch of track, the system will consist of a series of pods that will be able to carry two passengers, plus baggage, from the town’s train station to its downtown offices and the shopping district.

Milton Keynes’ plans is much more ambitious, calling for a fleet of 100 vehicles that will travel with far ore independently, albeit in a designated lane with curbs. The trial will assess safety and how people (and animals) react to them. The pods travel at up to 19 km/h (12 mph) and will contain GPS, cameras, and sensors to ensure they don’t crash into anything.

robotaxiAnd if all goes well, the system will be adopted by 2017 and residents will pay little more than a bus fare ($3.20) to travel in automated luxury. Purpose-built in the 1960s, Milton Keynes has an unusual grid layout that makes it an ideal testing ground for a plan that other British cities are seriously considering. Given the dual issues of congestion and pollution in British cities, a system of robotaxis seems like the perfect solution.

In fact, such a solution is ideal when it comes to all major cities around the world. The state of robotics, automation, centralized grids, and the reduced impact electrical transit has compared to gasoline-powered cars and buses, we could be looking at a world where every major city has its own system of robotaxis in the near future.

And I imagine a massive grid of Hyperoops lines will be connecting every major city… The future is likely to be mighty cool! In the meantime, enjoy this video of Heathrow’s podcar system in action:


Sources:
fastcoexist.com, heathrowairport.com

Google CEO Wants Land Set Aside for Experimentation

future-city-1Back in May, Google co-founder and CEO Larry Page hosted a rare Q&A session with the attendees of the Google I/O keynote speech. During this time, he gave some rather unfiltered and unabashed answers to some serious questions, one of which was how he and others should focus on reducing negativity and focusing on changing the world.

Page responded by saying that “the pace of change is increasing” and that “we haven’t adapted systems to deal with that.” He was also sure to point out that “not all change is good” and said that we need to build “mechanisms to allow experimentation.” Towards that end, he claimed that an area of the world should be set aside for unregulated scientific experimentation. His exact words were:

There are many exciting things you could do that are illegal or not allowed by regulation. And that’s good, we don’t want to change the world. But maybe we can set aside a part of the world… some safe places where we can try things and not have to deploy to the entire world.

So basically he’s looking for a large chunk of real-estate to conduct beta tests in it. What could possibly go wrong?

detroit_experimentOne rather creative suggestion comes from Roy Klabin of PolicyMic, who suggest that an aging and dilapidated Detroit might be just the locale Page and his associates are looking for. This past week, the city declared bankruptcy, and began offering to sell city assets and eradicate retirement funds to meet its $18 billion debt obligations.

What’s more, he suggests that SpaceX founder Elon Musk, who’s always after innovation, should team up with Google. Between the two giants, there’s more than enough investment capital to pull Detroit out of debt and work to rehabilitate the city’s economy. Hell, with a little work, the city could be transformed back into the industrial hub it once was.

And due to a mass exodus of industry and working people from the city, there is no shortage of space. Already the city is considering converting segments of former urban sprawl into farming and agricultural land. But looking farther afield, Klabin sees no reason why these space couldn’t be made available for advanced construction projects involving arcologies and other sustainable-living structures.

dragonfly-vertical-farm-for-a-future-new-york-1Not a bad idea, really. With cities like Boston, New York, Las Vegas, New Orleans, Moscow, Chendu, Tokyo and Masdar City all proposing or even working towards the creation of arcologies, there’s no reason why the former Industrial Heartland – now known as the “Rust Belt” – shouldn’t be getting in on the action.

Naturally, there are some who would express fear over the idea, not to mention Page’s blunt choice of words. But Page did stress the need for positive change, not aimless experimentation. And future generations will need housing and food, and to be able to provide these things in a way that doesn’t burden their environment the way urban sprawl does. Might as well get a jump on things!

And thanks to what some are calling the “New Industrial Revolution” – a trend that embraces nanofabrication, self-assembling DNA structures, cybernetics, and 3D printing – opportunities exist to rebuild our global economy in a way that is cleaner, more efficient and more sustainable. Anyone with space to offer and an open mind can get in on the ground floor. The only question is, what are they willing to give up?

venus_projectThere’s also a precedent here for what is being proposed. The famous American architect and designer Jacque Fresco has been advocating something similar for decades. Believing that society needs to reshape the way it lives, works, and produces, he created the Venus Project – a series of designs for a future living space that would incorporate new technologies, smarter materials and building methods, and alternative forms of energy.

And then there’s the kind of work being proposed by designer Mitchell Joachim and Terreform ONE (Open Network Ecology). And amongst their many proposed design concepts is one where cities use vertical towers filled with energy-creating algae (pictured below) to generate power. But even more ambitious is their plan to “urbaneer” Brooklyn’s Navy Yard by turning natural ecological tissues into viable buildings.

future-city2This concept also calls to mind Arconsanti, the brainchild of architect Paolo Solari, who invented the concept of arcology. His proposed future city began construction back in the 1970 in central Arizona, but remains incomplete. Designed to incorporate such things as 3D architecture, vertical farming, and clean, renewable energy, this unfinished city still stands as the blueprint for Solari’s vision of a future where architecture and ecology could be combined.

What’s more, this kind of innovation and development will come in mighty handy when it comes to time to build colonies on the Moon and Mars. Already, numerous Earth cities and settlements are being considered as possible blueprints for extra-Terran settlement – places like Las Vegas, Dubai, Arviat, Black Rock City and the Pueblos and pre-Columbian New Mexico.

Black Rock City - home to "Burning Man" - shown in a Martian crater
Black Rock City – home to “Burning Man” – shown in a Martian crater

These are all prime examples of cities built to withstand dry, inhospitable environments. As such, sustainability and resource management play a major role in each of their designs. But given the pace at which technology is advancing and the opportunities it presents for high-tech living that is also environmentally friendly, some test models will need to be made.

And building them would also provide an opportunity to test out some of the latest proposed construction methods, one that do away with the brutally inefficient building process and replace it with things like drones, constructive bacteria, additive manufacturing, and advanced computer modelling. At some point, a large-scale project to see how these methods work together will be in order.

Let’s just hope Page’s ideas for a beta-testing settlement doesn’t turn into a modern day Laputa!

And be sure to check out this video from the Venus Project, where Jacque Fresco explains his inspirations and ideas for a future settlement:


Sources:
1.
Elon Musk and Google Should Purchase and Transform a Bankrupt Detroit (http://www.policymic.com/)
2. Larry Page wants to ‘set aside a part of the world’ for unregulated experimentation (theverge.com)

3. Six Earth Cities That Will Provide Blueprints for Martian Settlements (io9.com)
4. The Venus Project (thevenusproject.org)
5. Arcosanti Website (arcosanti.org)
6. Terreform ONE website (terreform.org)

Climate Crisis: Living, Breathing Cities of the Future

future-city2The human race has been thinking the way it lives in the past few decades, due mainly to a number of challenges posed by climate change and resource development. This is not only an environmentally and socially responsible idea, its an absolute necessity given the sheer number of people that live in urban sprawl, and the many more that will need homes, sanitation, food and energy in the near future.

And a number of interesting concepts are being proposed. Using striking technological breakthroughs across multiple fields of study, designers are moving closer to making lightweight buildings that can move, and perhaps even think and feel. Instead of hard, polished building faces, emerging prototypes from some of the world’s research centers suggest future cities that would resemble living, breathing environments.

masdar_city1To break it down succinctly, urban environments of the future will be built of “smarter” materials, will most likely be constructed using advanced techniques – possibly involving robots or bacteria – and will be powered by greener, more sustainable means. Sanitation and irrigation will also be provided and involve a fair degree of recycling, and food will be grown in-house.

And while much of this will be accomplished with good old-fashioned plumbing, air vents, and electrical circuits, a good deal more could come in the form of structures that are made to resemble and even behave like living organisms. Might sound like a distant prospect or purely theoretical, but in fact many of these ideas are already being implemented in existing and planned cities around the world.

Scale_model_Masdar_cityFor example, the planned community of Masdar City in Abu Dhabi, designer Alexander Rieck has helped create a vast central cluster of opening and closing solar powered “sunflower” umbrellas that capture the sun’s rays during the day and fold at night, releasing stored heat in a continual cycle. In addition, the concept of the Wind Stalk is being pursued to generate wind-farms which don’t rely on turbines, and look just like standing fields of grass.

Another project comes from the American designer Mitchell Joachim of Terreform ONE (Open Network Ecology), who’s plans for a vast site covering Brooklyn’s Navy Yard call for the engineering of living tissues into viable buildings. This would involve concepts like his “living tree house” which involves building a human habitat by merging the construction process with the surrounding environment.


Such a project not only presents a way of building structures in a way that is far more energy-efficient, but also fully-integrated into the ecology. In addition, they would even be able to provide a measure of food for their inhabitants and be able to clean the local air thanks to the fact that they are made from carbon-capturing trees and plants.

And there was this project by Near-Living Architecture which was recently shown at the London Building Centre Gallery. Here we see a floating canopy of aluminum meshwork fitted with dense masses of interconnected glass and polymer filters that houses a carbon-capture system that works in much the same way that limestone is deposited by living marine environments.


Within each cell of the suspended filter array, valves draw humid air through chemical chambers where chalk-like precipitate forms, an incremental process of carbon fixing. This is not only an example of how futures of the city will help remove pollution from the air, but how buildings themselves will merge biological with artificial, creating a sort of “biomimetic building”.

What it all comes down to is breaking with the conventional paradigm of architecture which emphasizes clean, linear structures that utilize idealized geometric shapes, highly processed materials, and which create sanitary artificial environments. The new paradigm calls for a much more holistic approach, where materials are more natural (built of local materials, carbon, or biomimetic compounds) forms are interwoven, and the structures function like organics.

future_city1All of this cannot come soon enough. According to a recent UN report, three-quarters of humanity will live in our swelling cities by 2050.The massive influx to our planet’s urban populations could create a whole host of problems – from overcrowding to air pollution, extra stress on natural resources and loss of habitats to grow more food. The most obvious solution to this problem is to make sure that these future cities are part of the solution, and not more of the same dirty living spaces that generate megatons of waste and pollution year after year.

Hope you’re enjoying this “Climate Crisis” segment, and that its not getting anybody down. Granted, its a heavy subject, but crises have a way of bringing the best and brightest people and ideas to the fore, which is what I hope to present here. By addressing our present and future needs with innovative concepts, we stand to avert disaster and create a better world for future generations.

Up next, I plan to take a look at some of the air-cleaning building designs that are currently being produced and considered. Stay tuned!

Sources: bbc.com, (2)

Towards a Cleaner Future: The Strawscaper and The Windstalk

strawscaperAs the world’s population continues to grow and climate change becomes a greater and greater problem, urban planners and engineers are forced to come up with increasingly creative solutions. On the one hand, the population is expected to rise to an estimated 8.25 billion people by 2030 and 9.25 by 2050, and they will need places to live. On the other, these people will require energy and basic services, and these must be provided in a way that is clean and sustainable.

One such solution is known as the Strawscaper. The brainchild of designer Rahel Belatchew Lerdel, this building would be able to provide its own electricity using only wind and a series of piezoelectric fronds that rustle in the wind. Thanks to this method, the building would get all the power it needs from wind passing through its exterior, and would therefore not need to be attached to the city grid.

strawscaper2In a press release by Belatchew labs, Rahel claimed that the inspiration “came from fields of wheat swaying in the wind”. He also described the building he envisions as one that would give “the impression of a body that is breathing”. Details as to how it would generate its own electricity were also described:

By using piezoelectric technology, a large number of thin straws can produce electricity merely through small movements generated by the wind. The result is a new kind of wind power plant that opens up possibilities of how buildings can produce energy.

strawscaper1The full plan calls for the completion of the Söder Torn, a building in Stockholm that began construction in 1997 but was forcibly scaled down after its architect, Henning Larsen, lost control of the project. Completing it at this point would involve adding an additional 14 stories, thus bringing it from 26 to 40, and adding the piezoelectric fronds to make it electrically self-sufficient.

Though piezoelectricity has never been used in this way, the concept is well understood and backed by a number of research reports. In addition, Belatchew is not the only one considering it as a possible means of generating clean energy. Over in Masdar City, a planned community in Abu Dhabi, something very similar is being proposed to suit their energy needs.

windstalkIt’s known as the Windstalk, another means of generating electricity from wind without the needs for turbines. Though wind farms have long been considered an effective means of generating sustainable energy, resident living near large-scale operations have voiced concerns about the aesthetics and low-frequency vibrations they claim are generated by them. Thus, the concept of the Windstalk, created by New York design firm Atelier DNA.

The concept consists of 1,203 carbon fiber reinforced resin poles which stand 55 meters (180 feet) high and are anchored to the ground in concrete bases. The poles measure 30cm (12 in.) in diameter at the base and taper up to a diameter of 5cm (2 in.) at the top. Each pole is packed with piezoelectric ceramic discs, between which are electrodes that are connected by cables that run the length of each pole.

windstalk-2Thus, instead of relying on turbines to move magnets and create electrical current, each pole merely sways in the wind, compressing the stack of piezoelectric discs and generating a current through the electrodes. And just to let people know how much – if any – power the poles are generating, the top 50cm (20 in.) of each pole is fitted with an LED lamp that glows and dims relative to the amount of electrical power being generated.

As a way to maximize the amount of electricity the Windstalk farm would generate, the concept also places a torque generator within the concrete base of each pole. As the poles sway, fluid is forced through the cylinders of an array of current generating shock absorbers to convert the kinetic energy of the swaying poles into additional electrical energy. But of course, storage is also an issue, since wind power (like solar) is dependent on weather conditions.

windstalk-3Luckily, the designers at Atelier DNA have that covered too. Beneath a field of poles, two large chambers are located, one on top of the other. When the wind is blowing, part of the electricity generated is used to power a set of pumps that moves water from the lower chamber to the upper one. Then, when the wind dies down, the water flows from the upper chamber down to the lower chamber, turning the pumps into generators.

At the moment, the Windstalk concept, much like the Strawscaper, is still in the design phase. However, the design team estimates that the overall electricity output of the concept would be comparable to that of a conventional wind turbine array because, even though a single wind turbine that is limited to the same height as the poles may produce more energy than a single Windstalk, the Windstalks can be packed in much denser arrays.

Though by all accounts, the situation with our environment is likely to get worse before it gets better, it is encouraging to know that the means exist to build a cleaner, more sustainable future. Between now and 2050, when the worst aspects of Climate Change are expected to hit, the implementation of a better and more sustainable means of living is absolutely crucial. Otherwise, the situation will continue to get worse indefinitely, and the prospects of our survival will become bleak indeed!

Sources: fastcoexist.com, gizmag.com

The Water Discus: Dubai’s Submersible Hotel

underwater-hotelLeave it to Dubai to come up with something even more weird and adventurous in terms of architecture. Were it not enough that they already boast the tallest skyscraper (the Burj Khalifa) and the tallest, most-luxurious hotel (the Burj Arab) in the world, now they are attempting to build the world’s largest underwater hotel. Appropriately named the Water Discus, this new hotel promises “submersible luxury” to its clientele, just as soon as its completed.

The plan for the hotel – which was designed by Polish firm Deep Ocean Technology – involved two tiers of accommodations. The first consists of a series of futuristic looking discs suspended above the water, while the second involves a submersible section that is capable of submerging to a depth of 10 meters (33 feet) below sea level.

This lower section will contain the most expensive rooms in the hotel, as well as a diving area and a bar. It’s also intended to give those staying there an extended gander of what aquatic life looks like on the sea floor. Further to that, guests will be able to rent underwater vehicles that they can operate remotely, giving them a chance to explore and get a close up look at aquatic life, while still being able to luxuriate in the comfort of their rooms.

What’s more, the Swiss firm that owns the patents for Deep Ocean Technology also indicated that the hotel will also serve as an environmentally conscious research center as well as a tourism hub. As Bogan Gutkowski, the president of said Swiss firm, told World Architecture News:

“We would like to create here in the UAE the International Environmental Program and Center of the Underwater World Protection — with Water Discus Hotel as a laboratory tool for ocean and sea environment protection and research.”

And here we see another trend at work in the UAE, which is the blending of modern architecture with ecological and environmental research. This is perhaps best exemplified by Masdar City, the world’s first zero-emission planned urban environment. Who knows? With the construction of this hotel, they may just start working towards an eco-friendly underwater community. These days, just about anything seems possible in Dubai!

And just in case you’re curious, click here to check out the website for Deep Ocean Technology (aka. DOT) which discusses the proposed hotel. Don’t expect to be able to afford tickets, but I’m sure there’s plenty of interesting info to be had.

Source: Wired.com

Poalo Solari and the Birth of Arcology

Arcology: noun (plural arcologies) an ideal integrated city contained within a massive vertical structure, allowing maximum conservation of the surrounding environment. Origin: 1969: blend of architecture and ecology.

The question of what to do about Earth’s growing population – 7 billion and counting – and the environmental impact it is having has been on the minds of city planners, environmentalists, and global leaders for qu9ite some time. Far from it being a simple matter of determining how we are going to feed new every mouth we create, there’s also the question of how to provide for their other basic needs.

In the 20th century alone, humanity grew by multiplication factor of six. Cities expanded, suburban developments went up, and inner cities were “rezoned” and redeveloped in order to make room for them. When horizontal space became an issue, vertical structure were adapted, incorporating sky scrapers and massive high-rises. In addition, cities, counties and entire nations needed to find more sources of fresh water to address their health and sanitation needs, more landfills to accommodate waste, and more green spaces to grow food. In time, it soon became clear that this increased output of human beings and their various wastes was causing irreparable harm to the planet.

By the turn of the century, the projections only became worse, thanks in large part to the ongoing industrialization of developing nations. In these parts of the world, where a full third of the human race resides, the impact of so many new power plants, urban developments, superhighways, and fossil-fuel burning cars could not be underestimated. The problem of providing space for our people and seeing to their needs in a way that is sustainable in the long term has only become more pressing as a result.

As it turns out, the answer may lie in a concept developed in the 1960’s by a man named Paolo Soleri. An architect of Italian descent who studied at the feet of architect Frank Lloyd Wright, he is credited with coining the term “arcology”, a new form of architecture that plotted the creation of three-dimensional hyperstructures that would be self-sufficient, and in some cases, self-contained. Primarily proposed as a means to combat two-dimensional urban sprawl, arcologies were also meant to economize on transportation, energy use, commerce and agriculture. All needs, which included the need to reduce waste and impact on the environment, were incorporated in his new designs. And on top of that, they would be beautiful as well as very, very big.

One of his first designs was for a city-structure named Babel (or IID as it’s officially designated). This design called for a flared cylinder of apartments sitting in a saucer-shaped base, complete with commercial, civil spaces, and public areas. The estimated population for this monster design was 550,000 people – the population of a major city – but placed in an edifice 1900 meters high and 3000 meters at its widest point.

Close-ups of the design show the immense attention to detail that Soleri’s featured in his drawings. From housing, to production centers to water treatment and waste disposal, nothing was overlooked. And just in case you’re having problems imagining the scale, he features a picture of the Empire State building for a size comparison.

And then there was Hexadredon, an incredible geometric mountain resting on three immense supports. Accommodating over 170,000 people, it measured a mere 800 meters by 800 meters (640 square km). On top of all that, it looks immensely artistic, incorporating such design features as massive pyramids, support columns, and rotundas. In reality, it looks more like an ancient temple than a three-dimensional city.

His many other concepts involved cities adrift on water, built into canyons, or on the side of cliffs. As far as Soleri was concerned, nothing was off limits. Any and all geographic features and landscapes, including the ocean itself, could be built into human habitats. Though it remained somewhat speculative for its time, Soleri’s ideas formed the basis for a great deal of speculative writing and urban planning.

For instance, in Japan, urban planners have proposed a future city development to deal with urban sprawl in Tokyo – known as the Shimizu Mega-City Pyramid. As it stands, much of Tokyo Harbor is artificial, composed of fill in order to accommodate Japan’s growing population and industrial centers. This further expansion calls for the creation of a massive pyramid measuring 730 meters high, 8 square kilometers at the base, and capable of housing 750,000 people. All told, it would be roughly 14 times the size of the pyramid of Giza.

In addition, there is the proposed building project in Moscow known as “Crystal Island”. Measuring in at a whopping 2500 square kilometers at its base and 450 meters high, it will be the single largest structure on Earth, if and when it is completed. Shaped like a massive tent, the superstructure of the proposed design acts as a sort of second skin to the main building, creating a thermal buffer and shielding the interior from Moscow’s harsh weather.

In addition, this second skin will adjust with the seasons and sealed in winter to minimise heat loss, while opened again in summer to naturally cool the interior. Power would also be provided by built-in wind turbines and solar panel, as well as a series of renewable energy solutions. On top of all that, the design incorporates an existing park, which provides a range of activities, including cross-country skiing and skating. Construction was officially postponed in 2009 due to the economic crisis, but is expected to resume in the coming years.

Last, but not least, there is the planned community of Masdar City, which I wrote about in a previous article. Though not technically an arcology in the sense of a three-dimensional colossal environment, the design nevertheless incorporates all other aspects of Soleri’s concept. These include renewable energy sources, sustainable resource management, mass-transit, recycled water, and a range of other green technologies.

Today, the planned city of Arcosanti, which Soleri himself began construction on in 1970, remains an unfinished testament to his work and his genius. Located in central Arizona, just 110 km north of Phoenix, this work-in-progress incorporates Soleri’s unusual design features and, though uncompleted, remains a testament to his vision.

Check out this video from Arcosanti website, which featured Solari’s design for the mega-city Nudging Space:

Masdar City

Imagine a city that runs entirely on solar energy and other renewable energy source. A city that generates entirely no carbon and no waste, with mass transit that relies on electronic, computer-controlled pod cars. That is the concept behind Masdar City, a planned urban environment located 17 km south-east of the capital of the United Arab Emirates (Abu Dhabi).

Designed by the British architectural firm Foster and Partners, and with the majority of the seed capital coming from the government of Abu Dhabi, Masdar is a blueprint for future cities based on sustainability, clean energy, and the latest and best in manufacturing, recycling and waste management technology. On top of that, it will contain some of the most advanced facilities in the world, dedicated to science, commerce and eduction.

In essence, it is the answer of what to do about rapidly advancing technology, urban growth, and development in the developing world. Point of interest include:

Masdar Institute:
Wouldn’t you know it? At the heart of a city based on sustainability and clean energy is an institute dedicated to the furtherance of these very things. Known as the Masdar Institute of Science and Technology (MIST), this research-oriented university was developed in conjunction with the Massachusetts Institute of Technology and focuses on the development of alternative energy, sustainability, and the environment.

In addition, its facilities use 70% less electricity and potable water than normal buildings of similar size and is fitted with a metering system that constantly observes power consumption. It’s full range of programs include Chemical Engineering, Mechanical Engineering, Material Science and Engineering, Engineering Systems and Management, Water and Environmental Engineering, Computing & Information Science, Electrical Power Engineering and Microsystems.

Renewable Energy:
In addition to its planned 40 to 60 megawatt solar power plant, which will power further construction projects, with additional solar panels to  be placed on rooftops, for a total output of 130 megawatts. In addition, wind farms will be established outside the city’s perimeter capable of producing up to 20 megawatts, and the city intends to utilise geothermal energy as well.In addition, Masdar plans to host the world’s largest hydrogen power plant, a major breakthrough in terms of clean energy!

Water Management:
When it comes to water consumption, that too will be handled in an environmentally-friendly way that also utilizes solar energy. At the hear of this plan lies a solar-powered desalination plant. Approximately 80 percent of the water used will be recycled and waste greywater will be reused for crop irrigation and other purposes.

Waste Management:
As already noted, the city will also attempt to reduce waste to zero. Biological waste will be used to create nutrient-rich soil and fertiliser, and plans exist to incinerate it for the sake of generating additional power. Industrial waste, such as plastics and metals, will be recycled or re-purposed for other uses. The exterior wood used throughout the city is Palmwood, a sustainable hardwood-substitute developed by Pacific Green using plantation coconut palms that no longer bear fruit.

Transportation:
Initially, the planners for Masdar considered banning the use of automobiles altogether, focusing instead on mass transit and personal rapid transit (PRT) systems, with existing road and railways connecting to other locations outside the city. This systems utilize a series of podcars, designed by the company 2getthere, contains 10 passenger and 3 freight vehicles and serves 2 passenger and 3 freight stations connected by 1.2 kilometers of one-way track.

The cars travel at an average of 20km/h (12mph), trips take about 2 and a half minutes and are presently free of charge. Last year, a system of 10 Mitsubishi i-MiEV electric cars was deployed as part of a one-year pilot to test a point-to-point transportation solution for the city to complement the PRT and the freight rapid transit (FRT).

Summary:
Given the mounting environmental crisis this planet faces, cities like Masdar may very well be the solution to future urban planning and expansion. But of course, as an incurable sci-fi geek, I also consider cities like this to be a handy blueprint for the day when it comes time to plan extra-solar and even exoplanet settlements. Not only are they effective at curbing our carbon footprint and environmental impact, they are also a  good way to start over fresh on a new world!

Related links:
Masdar Institute (http://www.masdar.ac.ae/)
Masdar City (http://www.masdar.ae/en/home/index.aspx)

The Future is Here: Robotaxis and Podcars!

2010 Zagato 2getthere Podcar

Fans of Total Recall may recall the Johnnycab, a robot taxi service that helped Arny get to where he was going and flee his armed assailants. Well, as it turns out, personal automated podcars (aka. robotaxis) are not a thing of the future anymore. Yes, as it turns out, Masdar City in the United Arab Emirates has a taxi service that consists of a small fleet of autonomous taxis which run entirely on electricity.

Invented by a European company named “2GetThere”, the service accommodates somewhere in the vicinity of 25,000 people per month. As part of the growing project to create a self-sustaining city that runs on clean, renewable energy, these rails are consistent with the city’s ethos and are expected to pave the way for clean mass transit. Best of all, the 2GetThere models don’t have weird-looking animatronic robot busts sitting in the front seat to creep you out and provide needless comic relief!

But of course, the UAE is not the only place where robotaxis can be found, nor is 2GetThere the only company investing in this revolutionary technology. In San Jose, the so-called “Capital of Silicon Valley”, similar efforts are being made to create clean, sustainable transportation. In this case, it takes the form of the Personal Rapid Transit System; or as it is more widely known, Podcars.

The system involves a series of on-call, point to point transit cars which move about on main lines and intermediate stations to find the quickest route to a destination. Under normal conditions, this means of transit has been shown to be faster than other forms of mass transit or automobile. The “matrix”, or looped layout structure of the network, allows for high-volume and is also expected to lessen the burden on conventional transit systems.

Granted, both networks are in their infancy, but both the science and the planning behind them is sound and expected to take off in the near future. Much like mag lev and light rail train systems, they are part of a growing Eco-friendly attitude towards city planning and mass transportation which is anticipated to become the mainstay of urban development and renewal in the 21st century.

And of course, Google and other companies are also hard at work trying to bring us other designs and concepts. Amongst them are true self-driving cars, the kinds that may very well involve robot drivers. But in all likelihood, these will take the form of truly “smart” cars – i.e. the kind that can guide themselves, pick optimal routes, and avoid accidents and traffic congestion. Sad to think that the days of driving might actually be coming to an end. But hey, at least we might save the planet in the process!