News From Mars: Mysterious “Thigh Bone” Revealed!

mars-thigh-bone-illusion-curiosity-photoTwo weeks ago, the Curiosity rover spotted an object on the surface of Mars that bore a striking resemblance to a femur (aka. athigh bone). This sighting caused a bit of a media stir and fueled speculation – mainly by conspiracy and UFO theorists – that proof of life on Mars had finally been found. This claim was quickly picked up by media outlets and began to spread like a bad strain of flu.

Alas, NASA has since announced that the finding, much like the Martian “donut” and “rat”, was just another piece of oddly-shaped rock. Mission scientists believe that here too, the rock was sculpted into its unusual shape by wind or water erosion. NASA announced all this when they released Curiosity’s “thigh bone” photo with a science explanation on Thursday (Aug. 21). In the caption, they said that:

No bones about it! Seen by Mars rover Curiosity using its MastCam, this Mars rock may look like a femur thigh bone. Mission science team members think its shape is likely sculpted by erosion, either wind or water.

If life ever existed on Mars, scientists expect that it would be small simple life forms called microbes. Mars likely never had enough oxygen in its atmosphere and elsewhere to support more complex organisms. Thus, large fossils are not likely.

MARS-COMET-surfaceIn short, the long-sought after signs of life that NASA is searching for have yet to be found. The Curiosity rover has found evidence that Mars was once a habitable place in the ancient past, mainly by determining with certainty that it once held water and a viable atmosphere. However, to date, there is no evidence that creatures large enough to leave a bone behind ever existed on the planet.

There is a long tradition of seeing shapes in Mars rocks that don’t reflect reality. The phenomenon in which the human brain perceives faces, animals or other shapes that aren’t really there is known as pareidolia; and when it comes to Mars, there is a long and fertile history of this taking place. In fact, in 1877 when astronomer Giovanni Schiaparelli looked up at Mars when it was in opposition, he spotted a network of lines that ran along the planet.

martian_canalsLater astronomers confirmed these sightings and erroneously thought them to be canals, an observation which was quickly seized upon by the popular imagination and spawned an entire mythos of there being a civilization on Mars. This civilization, made up of little green men known as Martians, is the entire basis of alien mythology which would go on to inspire 20th century works as The War of the Worlds and The Martian Chronicles.

And for those old enough to recall, the “Martian face”, which was captured by the Viking Orbiter in 1976, is a more modern example. As you can see from the picture below (lower right hand), the low-resolution photos of the Cydonian mesa led many people to see a human face in it. This led to much speculation and more than a few crackpot theories about a civilization on Mars.

mars_faceHowever, high-res photos taken in 2001 by the Mars Global Surveyor probe (center) put these claims largely to rest by showing that the “face” was just an optical illusion. However, many of these same theorists moved on to claim that pyramid-like formations in that same region (Cydonia) so closely resembled those of Giza that there had to be a common explanation – i.e. aliens built the pyramids.

And in all cases, the golden rule seems to apply: never let little a thing like the facts or plausibility get in the way of a good story! As the rover continues on its long mission to find evidence of life on Mars, I am sure there will be plenty more pictures being seized upon by oddball theorists who are looking to peddle their oddball theories. Some of them are sure to be entertaining, so stay tuned!

Sources: cbc.ca, space.com

Powered by the Sun: Breakthrough Solar Cells

solar1In addition to becoming cheaper, and increasing in efficiency and yields, solar cell technology is also growing in terms of innovative design. By going beyond the conventional design of silicon panels and electrical cables, researchers are ensuring that solar technology can go farther. And the latest advances in design are especially far-sighted, aiming to merge solar technology with just about any surface, and even sending it into space.

In the former case, researchers at Michigan State University have created a fully transparent solar concentrator, which could turn any window or sheet of glass – from highrise buildings to the screens on smartphones and tablets – into a photovoltaic solar cell. And whereas other “transparent” solar panels have been designed in the past, this one is the first that truly lives up to the word.

transparent-solar-cellScientifically, a transparent solar panel is something of an oxymoron. Solar cells, specifically the photovoltaic kind, make energy by absorbing photons and converting them into electrons. If a material is transparent, by definition it means that all of the light passes through the medium. This is why previous transparent solar cells have actually only been partially transparent, and usually cast a colorful shadow.

To get around this limitation, the Michigan State researchers use a slightly different technique for gathering sunlight. Instead of trying to create a transparent photovoltaic cell, they used a transparent luminescent solar concentrator (TLSC), which consists of organic salts that absorb specific non-visible wavelengths of ultraviolet and infrared light, which they then luminesce (glow) as another wavelength of infrared light (also non-visible).

https://i0.wp.com/www.extremetech.com/wp-content/uploads/2014/08/transparent-luminescent-solar-concentrator-colorful.jpgThis emitted infrared light is guided to the edge of plastic, where thin strips of conventional photovoltaic solar cell convert it into electricity. Currently, the Michigan TLSC has an efficiency of around 1%, but they think 5% should be possible. On their own, these aren’t huge figures, but on a larger scale — every window in a house or office block — the numbers quickly add up to a significant electrical yield.

Moreover, the researchers are confident that the technology can be scaled all the way from large industrial and commercial applications, down to consumer devices, while remaining “affordable.” So far, one of the larger barriers to large-scale adoption of solar power is the intrusive and ugly nature of solar panels. But if large amounts of solar power can be produced from sheets of glass and plastic, it would go a long way to making the scaling process feasible.

solar_panel_origamiAnother major innovation comes from Brigham Young University, where researchers have been working with NASA’s Jet Propulsion Laboratory to address the challenge of Space-Based Solar Power. For some time, scientists have understood that a solar array in orbit of Earth would be ideally suited for solar power collection, since it would be immune to weather, cloud cover or diurnal cycles (aka. nighttime).

Unfortunately, getting solar cells into space is a bit of a problem. In order to be effective, solar panels need to be thin have a large surface area to soak up more rays. This makes it difficult to transport them into orbit, and requires that they be broken down,and flown up piece by piece, and then assembled once in orbit. Given the cost of mounting a sending a single rocket into orbit, this prospect becomes very costly very fast.

solar_panel_origami1However, the Brigham team came up with a simple and elegant solution to this problem, and found it in the form of origami. By working with complex origami folds, they were able to design a solar array that can shrink down to one-tenth of its original size. Folded up, the device is 2.7 meters (8.9 feet) across and can easily wrap around a spacecraft. Once it reaches space, the array would then unfold to become as wide as 25 meters (82 feet).

Given that solar panels deal with large, flat, thin structures, the origami concept seems like a natural fit. And this is not the first time that it has been used in space equipment design – in the 1990’s, Japanese astrophysicist Koryo Miura created a prototype for another folding solar panel. However, that project was abandoned for various reasons, not the least of which was lack of funding.

space-solar-headTo make the concept work and renew interest in the application, he Brigham team worked with Robert Lang, a world-renowned origami expert who also happens to be a mathematician and engineer and once worked at JPL himself. As Brian Trease, a mechanical engineer at the Jet Propulsion Laboratory, said:

He was trained as a physicist, used to work at JPL, and then got tired of the formal bureaucracy and left to start folding paper. Now he’s a world expert… We see value in going directly to any artist, even if they don’t have his credentials, because they have the thousands of hours or folding and tinkering to realize what can and can’t be done. Anytime you can bring in other disciplines, they just visualize things differently and bring in different solutions to your problems.

The new solar panels could be used to power spacecraft and potentially also on orbiting power stations that could wirelessly send energy to Earth via microwaves. A similar design could also be used on Earth to provide new options for portable solar power in remote locations. The same type of design might also be used in architecture or product design because of its unusual looks and function.

NASA_suntowerAccording to Trease, the Department of Defense has already been in touch with them regarding applications for soldiers in the field:

Soldiers right now might carry around 100 pounds, 15 of those pounds are batteries and fuel. If you can eliminate that, you’ve dramatically reduced their load… It’s different from opening an umbrella, because it can accommodate rigid material. You could do something like a deployable glass chandelier or a table. When it’s deployed, it looks like a flower blooming–it’s got a nice aesthetic to it.

In the next few weeks, Trease will also meet with other experts to consider different potential applications for space equipment, like antennas and reflectors, that could also deploy using origami. And given the rapidly-dropping prices associated with placing objects into orbit, this could prove to be the basis for the dream of Space-Based Solar Power – where all our energy needs are met by solar arrays in orbit that then beam them to Earth.

 

Source: extremetech.com, fastcoexist.com

News From Space: SpaceX Booster Explodes in Flight

spacex-falcon-9-octaweb-640x427Last week, during a test flight in McGregor Texas, a new space SpaceX Falcon 9 Reusable Development Vehicle 1 (F9R Dev 1) exploded in midair. This three-engine variant of the F9 is the latest in SpaceX’s arsenal of vertical takeoff, vertical landing (VTVL) rockets designed to allow for easy recovery and reuse. Previously, Grasshopper had only used a single Merlin rocket engine; but for this test, a three-engine version of the vehicle was being used.

The F9R Dev 1 is a second-generation test vehicle rocket based on the SpaceX Grasshopper. Built as part of SpaceX’s program to develop a fully reusable launcher system and spacecraft with all components capable of a powered landing, the F9R has lighter, retractable landing legs and is 50 percent longer than the Grasshopper. It made its first flight last April and is capable of flight operations up to 3,000 m (10,000 ft).

https://i0.wp.com/www.extremetech.com/wp-content/uploads/2014/08/exploding-spacex-rocket-grasshopper-f9r-640x357.jpgThis marks the first major failure for SpaceX’s commercial space launch program, and in a statement, SpaceX says the initiated its self-destruct sequence automatically after detecting an anomaly. Nearby residents saw the fireball and local television station KXXV caught the incident on video. From the footage (seen below), the new test rocket is seen going up, turning 90 degrees to horizontal, and then detonating with a rather neat fireball.

Mercifully, no one was harmed (including the local livestock). Following the incident, Elon Musk tweeted that the vehicle “auto-terminated,” but there were no injuries or near-injuries, and that “Rockets are tricky …” SpaceX also released the following statement saying:

Earlier today, in McGregor, Texas, SpaceX conducted a test flight of a three engine version of the F9R test vehicle (successor to Grasshopper). During the flight, an anomaly was detected in the vehicle and the flight termination system automatically terminated the mission.

Throughout the test and subsequent flight termination, the vehicle remained in the designated flight area. There were no injuries or near injuries. An FAA representative was present at all times.

With research and development projects, detecting vehicle anomalies during the testing is the purpose of the program. Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test. As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.

SpaceX will provide another update when the flight data has been fully analyzed.

spacex-falcon-9-rocket-largeIn short, SpaceX was attempting something new and exciting and it didn’t quite go as planned. And although it cost them millions of dollars, rocket scientists know from experience that a controlled detonation in the air is far better than an uncontrolled one on the ground. Should a rocket lose control and crash into the Earth, it will detonate all of its unspent fuel and can cause extensive damage and loss of life.

At this point it’s impossible to say what kind of anomaly was experienced by the rocket, but SpaceX is poring over the gigabytes of flight telemetry data to try and find out what went wrong. In the meantime, space enthusiasts are hoping people will remember that mishaps are part of the development process, and that we’ve come very far since the early days of NASA and Project Mercury, where mistakes and deaths were far more common.

And if SpaceX wants to create the world’s first reusable space launch system, and crack the cheap, commercial space travel market wide open, there are going to be a few fireballs along the way. But as long as it’s just the test launches that explode, we should count our blessings. And in the meantime, be sure to check out the footage obtained by KXXV of the failed test flight:


Sources:
extremetech.com, gizmodo.com

News From Space: Earth Organisms Found In Space!

space_organismDuring a routine spacewalk to clean the outside of the space station, a team of Russian astronauts reportedly found organisms clinging to the side of the International Space Station. After analyzing the samples they took, they identified the organisms as sea plankton that likely originated from Earth, but couldn’t find a concrete explanation as to how these organisms made it to the ISS — or how they managed to survive.

Though NASA has so far been unable to confirm whether or not the Russians truly did discover sea plankton clinging to the exterior of the station. But according to the chief of the Russian ISS orbital mission, Vladimir Solovjev, these findings are legitimate and “absolutely unique.” And there is some scientific precedent for certain creatures being able to survive the vacuum of space.

 

tardigrade-electron-scanning-colorizedConsider tardigrades, for example. These water-dwelling microscopic invertebrates that are known to be able to survive a host of harsh environments. They can survive extreme temperatures (slightly above absolute zero to far above boiling), amounts of radiation hundreds of times higher than the lethal dose for a human, pressure around six times more than found in the deepest parts of the ocean, and the vacuum of space.

The organisms found on the ISS aren’t tardigrades, but the little invertebrates show that some living organisms from Earth can indeed survive the harshness of space. But the real mystery is how they made it all the way up there, 330 km (205 miles) above Earth. The scientists have already dismissed the possibility that the plankton were simply carried there on a spacecraft from Earth, as the plankton aren’t from the region where any ISS module or craft would’ve taken off.

International-Space-Station-ISS-580x441The working theory is that atmospheric currents could be scooping up the organisms then carrying them all the way to the space station, though that would mean the currents could travel to astonishing altitudes. Living organisms have been found far above Earth before, such as microbes and bacterial life discovered at altitudes of 16 to 40 kms (10 and 24.8 miles) respectively into the atmosphere.

Though these numbers are a far cry from 330 km. For now, all that can be done is to wait and see if the Russian team confirms the findings with NASA. Then, maybe the two factions can work together in order to figure out how plankton made it all the way up into space, and perhaps even discover exactly why the plankton can survive. The organisms aren’t exactly the first confirmed discovery of alien life, but they do pose another fascinating mystery.

Sources: extremetech.com, sploid.gizmodo.com, en.itar-tass.com

News From Mars: Curiosity Celebrates 2 Years!

curiosity_peakEarlier this month, Curiosity marked its second year on the Red Planet, and this anniversary comes amidst plenty of exciting news and developments. Ever since the rover touched down at the Bradbury Landing site inside the Gale Crater on August 5, 2012 at 10:31 pm PDT (August 6, 05:31 GMT), it has been busily searching for signs that life once existed on Earth’s neighbor. And as it enters into its third year of exploration, it is getting closer to accomplishing this lofty goal.

The nuclear-powered explorer is the largest, most advanced rover ever built. And since nothing like it had ever flown before and the maintenance facility was over 160 million kilometers (1oo million miles) away, the first months that Curiosity spent on Mars involved an array of system tests before it took it first tentative rolls across the Martian sands on its roundabout path to Mount Sharp.

curiosity_roadmap1Curiosity’s main mission was to find out if there are any places on Mars where life could have once existed – specifically, areas displaying minerals and geology that could have been produced by water. The Bradbury Landing site, where it touched down, turned out to be very close to an ancient dried lake bed in an area named Yellowknife Bay. According to NASA, this lake bed may have been able to sustain microbial life billions of years ago.

And then, barely six months after landing, the scientists struck gold when they drilled into a rock outcrop named “John Klein” at Yellowknife Bay and unexpectedly discovered the clay bearing minerals on the crater floor. This was the first instance of Curiosity finding clay-bearing minerals. or phyllosilicates, which are a key sign that organic molecules could exist on the planet.

Curiosity_drillingsAs Curiosity Project Scientist John Grotzinger of the Caltech said in a statement to mark the anniversary:

Before landing, we expected that we would need to drive much farther before answering that habitability question. We were able to take advantage of landing very close to an ancient streambed and lake. Now we want to learn more about how environmental conditions on Mars evolved, and we know where to go to do that.

Compared to its first year, which was marked by many firsts – such as the first drilling operation on Mars, the first laser firing, and first UV night scans – Curiosity’s second year on the Red Planet has been more routine. However, it hasn’t been without its share of excitement. In February, the rover cleared a dune that blocked its progress and in July it negotiated a detour around rocky terrain at Zabriskie Plateau.

curiosity-2nd-year-2However, by far, the majority of the rovers second Earth year on the Red Planet has been spent driving as fast as possible towards a safe entry point to the slopes of Mount Sharp. To date, Curiosity’s odometer totals over 9.0 kilometers (5.5 miles) since landing inside Gale Crater on Mars in August 2012, and her on board camera has snapped over 174,000 images – many of which have been transformed into panoramic shots of the surface.

The desired destination for the rover is now about 3 kms (2 miles) southwest of its current location. This consists of a bedrock unit that for the first time is actually part of the humongous mountain known as Mount Sharp. As the primary destination on her ongoing mission, this layered mountain in the Gale Crater towers 5.5 kilometers (3.4 miles) into the Martian sky, and is believed to hold the most compelling evidence of life yet.

mountsharp_galecraterThe sedimentary layers in the lower slopes of Mount Sharp are the principal reason why the science team specifically chose Gale Crater as the primary landing site. Using high resolution spectral observations collected by NASA’s powerful Mars Reconnaissance Orbiter (MRO), they were able to determine the presence of deposits of clay-bearing minerals. or phyllosilicates, a key sign that organic molecules could exist on the planet.

In late July of this year, the rover arrived in an area of sandy terrain called “Hidden Valley” which is on the planned route ahead leading to “Pahrump Hills”. Scientists anticipated that the outcrops here would offer a preview of a geological unit that is part of the base of Mount Sharp for the first time since landing. However, the sharp edged rocks caused significant damage to the rovers six aluminum wheels, forcing it to make a detour.

Mars_rovermapThis detour will take Curiosity to a similar site called “Bonanza King” to carry out its fourth drilling mission. According to NASA, this is no great loss because the two areas are geologically connected and the space agency is keen to look at a formation that is different from the crater floor formations encountered so far. Engineers are studying Bonanza King to see if its is suitable for drilling by assessing whether or not the plates seen on the surface are loose.

When drilling operations resume, NASA will study alternative routes to Mount Sharp and determine how well the rover’s wheels can handle sand ripples. However, as Dr. Jim Green, NASA’s Director of Planetary Sciences, said during an interview during the rover’s second anniversary in Washington, DC : “Getting to Mount Sharp is the next big step for Curiosity and we expect that in the Fall of this year.”

Godspeed, little rover! And I do hope that it finds the long-sought-after organic particles it has been looking for since the mission began. This discovery will not only show that life once existed on Mars (and still does in some capacity) it will also be one of the greatest scientific finds of all time, and maybe even serve as the starting point for ensuring that it can exist again.

terraforming

Sources: universetoday.com, gizmag.com, (2)

More Yuva Artwork!

gliese-581.jpgMore news on the collaborative writing front! A few weeks back, I found myself tinkering with some of the ideas for the upcoming anthology known as Yuva – the one that deals with space exploration and colonization in the not-too-distant future. As a result of this tinkering, I began to look at some of our concept art and began to ponder making some changes…

Basically, in the anthology me and my writer’s group are crafting, there would be multiple waves of settlers arriving at the planet known as Gliese 581 g (aka. Yuva). Whereas the First Wave would be arriving in ships that relied on relativistic engines (slower than the speed of light), subsequent “waves” would be using something a little more advanced.

Second WaveHence the design you see above. Here, the ship is one of three that would be bringing the Second Wave to Yuva. Note the torus ring that encloses the ship. This indicates that the vessel comes equipped with an Alcubierre Drive, a proposed FTL system that is currently being investigated by NASA’s Engineering Directorate.

Based on the field equations of theoretical physicist Miquel Alcubierre, the drive does not  exceeding the speed of light within its local frame of reference, but allows a spacecraft to contract space in front of it and expand space behind it, resulting in effective faster-than-light travel.

ixs-enterpriseThe design was inspired in large part by the IXS Enterprise designs by Mark Rademaker, an artist who sought to visualize what a spaceship that relied on the Alcubierre Drive might look like. As you can see, he too pictured a ship that would have a ring-shaped torus, but is more suited to our near-future aspirations of exploration.

For the sake of Yuva, the Second Wave ships need to be especially exotic. Which would mean that the vessels have hulls composed of nanofabricated materials that are completely seamless. And whereas the First Wave ships would rely on antimatter engines that would spew energy out the back, the new ships would have no thruster nozzles to speak of.

space-colony-art-670It’s all in keeping with the idea of rapidly advancing technology, and how the effects of space travel exacerbate the gap between new and obsolete. Whereas the First Wave of colonists would take 100+ plus years to get to a star within our stellar neighborhood, subsequent waves would only need a few years.

This would mean that those who came next would be at least a century ahead in terms of development. And by the 22nd/23rd centuries, when the story is taking place, the leaps and bounds taking place in that amount of time would be immense. New waves of settlers would overwhelm the old with a sense of future shock…

space_elevator2But I’m venturing into spoiler territory here! Rest assured, when the anthology is complete, there’s going to be plenty of these kinds of technological, social and predictive issues being explored. And throughout all that, a sense of high adventure as well. After all, we started this project wanting to capture the awe and wonder that comes from space exploration.

Come hell or high water, that is what we intend to do! Stay tuned for more on this book as it develops…

News from Space: NASA Showcases New Rover Tools

NASA_2020rover1Last Thursday at the agency’s headquarters in Washington, NASA unveiled more information about its Mars 2020 rover, which is scheduled to join Opportunity and Curiosity on the Red Planet by the end of the decade. The subject of this latest press release was the rover’s payload, which will consist of seven carefully-selected instruments that will conduct unprecedented science and exploratory investigations, and cost about $130 million to develop.

These instruments were selected from 58 proposals that were submitted back in January by researchers and engineers from all around the world. This is twice the usual number of proposals that NASA has received during instrument competitions in the recent past, and is a strong indicator of the extraordinary level of interest the scientific community is taking in the exploration of the Mars.

NASA_2020roverThese seven new instruments include:

  • Mars Oxygen ISRU Experiment (MOXIE): this technology package will process the Martian atmosphere into oxygen. ISRU stands for In Situ Resource Utilization.
  • Planetary Instrument for X-ray Lithochemistry (PIXL): this spectrometer will use a high-resolution imager and X-ray fluorescence for detailed elemental analysis to a finer degree than possible with any prior equipment.
  • Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC): this sensor suite will use an ultraviolet laser for fine-scale mineralogy, detecting organic compounds, and high-resolution imaging.
  • Mastcam-Z: an advanced camera system that will send home panoramic and stereoscopic images and assist with rover operations and help determine surface mineralogy.
  • SuperCam: an imaging device with super capacities to perform chemical composition analysis and more mineralogy. This tool will allow the rover to peer around hunting for organic compounds within rocks or weathered soils from a distance, helping identify interesting locations to sample in greater detail.
  • Mars Environmental Dynamics Analyzer (MEDA): This sensor suite to measure temperature, wind speed and direction, pressure, and relative humidity. As dust is such a defining characteristic of weather on the red planet, it’s also going to measure dust size and shape, helping characterize how big of a hassle it will make housekeeping.
  • Radar Imager for Mars’ Subsurface Exploration (RIMFAX): a ground-penetrating radar to imagine the subsurface to centimeter-scale resolution.

These instruments will be used to determine how future human explorers could exploit natural resources to live on Mars, pinning down limits to how much we could rely on using local materials. In addition, demonstration technology will test out processing atmospheric carbon dioxide to produce oxygen, a key step towards using local resources for manufacturing oxidizers for rocket fuel and suitable for humans.

NASA_2020rover5This is perhaps the most exciting aspect of the proposed mission, which is looking ahead to the possibility of manned Martian exploration and even settlement. To quote William Gerstenmaier, the associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington:

Mars has resources needed to help sustain life, which can reduce the amount of supplies that human missions will need to carry. Better understanding the Martian dust and weather will be valuable data for planning human Mars missions. Testing ways to extract these resources and understand the environment will help make the pioneering of Mars feasible.

At the same time, and in keeping with plans for a manned mission, it will carry on in NASA’s long-term goal of unlocking Mars’ past and determining if life ever existed there. As John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate in Washington, explained:

The Mars 2020 rover, with these new advanced scientific instruments, including those from our international partners, holds the promise to unlock more mysteries of Mars’ past as revealed in the geological record. This mission will further our search for life in the universe and also offer opportunities to advance new capabilities in exploration technology.

Mars_footprintNASA addressed these goals and more two weeks ago with their mission to Mars panel at the 2014 Comic-Con. This event, which featured retired astronaut and living legend Buzz Aldrin, spoke at length to a packed room about how Apollo 11 represented the “the first Giant Leap”. According to Aldrin, the Next Giant Leap could be “Apollo 45 landing humans on Mars.”

The panel discussion also included enthusiastic support of Orion and the Space Launch System which are currently under development and will be used when it finally comes time to send human explorers to join the rovers on Mars. The Mars 2020 mission will be based on the design of the highly successful Mars Science Laboratory rover, Curiosity, which landed almost two years ago.

NASA_2020rover2Not only does it look virtually identical to Curiosity – from its six-wheeled chassis, on-board laboratory, and instrument-studded retractable arms – and will even be partly built using Curiosity’s spare parts.It will also land on Mars using the same lowered-to-the-surface-by-a-giant-sky-crane method. NASA als0 plans to use the rover to identify and select a collection of rock and soil samples that will be stored for potential return to Earth by a future mission.

These rock samples will likely have to wait until the proposed manned mission of 2030 to be picked up, but NASA seems hopeful that such a mission is in the cards. In the meantime, NASA is waiting for their MAVEN orbiter to reach Mars and begin exploring it’s atmosphere (it is expected to arrive by September), while the InSight Lander – which will examine Mars’ interior geology – is slated for launch by March 2016.

terraformingSo we can expect a lot more news and revelations about the Red Planet in the coming months and years. Who knows? Maybe we may finally find evidence of organic molecules or microbial life there soon, a find which will prove once and for all that life exists on other planets within our Solar System. And if we’re really lucky, we might just find that it could feasibly support life once again…

Sources: cbc.ca, fastcompany.com, nasa.gov, space.io9.com, (2), extremetech.com

News from Space: Coming Comet Flyby of Mars

Mars_comet_flybyEarth’s neighbor is once again making the news, but not for the usual reasons. Rather than groundbreaking discoveries or updates being provided by the small army of rovers or satellites, the NASA has now got its eyes firmly fixed on the Red Planet because of an incoming comet. And in the coming months, NASA is taking every precaution to make sure its orbiting spacecraft are out of the way.

Known as C/2013 A1 Siding Spring, the comet’s icy nucleus is predicted to flyby Mars on Oct. 19th, and will miss the planet by just 132,000 km (82,000 miles). That’s 17 times closer than the closest recorded Earth-approaching comet, Lexell’s Comet, which skittered by our world in 1770. And while this is certainly a record-breaking event, no one is concerned about it damaging anything on the Martian surface.

Mars_comet_sidingspringIn fact, it the dust particles embedded in the comet’s vaporizing ice that concerns NASA planners. As dust spreads into a broad tail that could potentially brush Mars’ upper atmosphere, it could also play havoc with or even strike an orbiter. While tiny particles are hardly a hazard on their own, when they are traveling at 56 km (35 miles) per second relative to a spacecraft, a single impact could spell disaster.

Rich Zurek, chief scientist for the Mars Exploration Program at NASA’s Jet Propulsion Laboratory in Pasadena, California, explains:

Three expert teams have modeled this comet for NASA and provided forecasts for its flyby of Mars. The hazard is not an impact of the comet nucleus, but the trail of debris coming from it. Using constraints provided by Earth-based observations, the modeling results indicate that the hazard is not as great as first anticipated. Mars will be right at the edge of the debris cloud, so it might encounter some of the particles — or it might not.

mars-comet-NASAHence why NASA is looking to get its hardware out of the way. The agency currently operates the Mars Reconnaissance Orbiter (MRO) and Mars Odyssey spacecraft with a third orbiter, MAVEN, currently on its way to the planet and expected to settle into orbit a month before the comet flyby. Teams operating the orbiters plan to have all spacecraft positioned on the opposite side of Mars when the comet is most likely to pass by.

Already, mission planners tweaked MRO’s orbit on July 2 to move it toward a safe position with a second maneuver to follow on August 27. A similar adjustment is planned for Mars Odyssey on August 5 and October 9 for the Mars Atmosphere and Volatile Evolution (MAVEN) probe. The time of greatest risk to the spacecraft is brief – about 20 minutes – when the widest part of the comet’s tail passes closest to the planet.

MARS-COMET-surfaceAs for the rovers on the surface, there really isn’t much to worry about there. Similar to what happens with meteor showers here on Earth, Mars’ atmosphere is thick enough that cometary dust particles will incinerate before they reach the surface. And its expected that rover cameras may be used to photograph the comet before the flyby and to capture meteors during the comet’s closest approach.

Despite concerns about dust, NASA knows a good opportunity when it sees one. In the days before and after the flyby, all three orbiters will conduct studies on the comet. According to a recent NASA press release, instruments on MRO and Odyssey will examine the nucleus, coma and tail and possible effects on the Martian atmosphere:

Odyssey will study thermal and spectral properties of the comet’s coma and tail. MRO will monitor Mars’ atmosphere for possible temperature increases and cloud formation, as well as changes in electron density at high altitudes and MAVEN will study gases coming off the comet’s nucleus as it’s warmed by the sun. The team anticipates this event will yield detailed views of the comet’s nucleus and potentially reveal its rotation rate and surface features.

This is Comet Siding Spring’s first trip to the inner solar system, so we can expect plenty of news and updates as it passes Mars. And the icy vapor and dust it leaves behind, which has been in a state of deep freeze since the time the planets were formed, will make for some pretty interest research as well! And be sure to check out this Solar System Scope simulation of the comet’s path as it makes it way through our Solar System past Mars.

Source: universetoday.com, solarsystemscope.com

News From Space: Astronaut Robots

spheres_1As if it weren’t bad enough that they are replacing workers here on Earth, now they are being designed to replace us in space! At least, that’s the general idea behind Google and NASA’s collaborative effort to make SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites). As the name suggests, these robots are spherical, floating machines that use small CO2 thrusters to move about and performing chores usually done by astronauts.

Earlier this month, NASA announced it’s plan to launch some SPHERES aboard an unmanned Cygnus spacecraft to the International Space Station to begin testing. That launch took place on July 11th, and the testing has since begun. Powered by Tango, Google’s prototype smartphone that comes with 3D sensors that map the environment around them, the three satellites were used to perform routine tasks.

nasa-antares-launch-photoNASA has sent SPHERES to the ISS before, but all they could really do was move around using their small CO2 thruster. With the addition of a Tango “brain” though, the hope is that the robots will actually be able to assist astronauts on some tasks, or even completely carry out some mundane chores. In addition, the mission is to prepare the robots for long-term use and harmonized them to the ISS’ environment.

This will consist of the ISS astronauts testing SPHERES ability to fly around and dock themselves to recharge (since their batteries only last 90 minutes), and use the Tango phones to map the Space Station three-dimensionally. This data will be fed into the robots so they have a baseline for their flight patterns. The smartphones will be attached to the robots for future imaging tasks, and they will help with mathematical calculations and transmitting a Wi-Fi signal.

spheres_0In true science fiction fashion, the SPHERES project began in 2000 after MIT professor David W. Miller was inspired by the “Star Wars” scene where Luke Skywalker is being trained in handling a lightsaber by a small flying robot. Miller asked his students to create a similar robot for the aerospace Industry. Their creations were then sent to the ISS in 2006, where they have been ever since.

As these early SPHERES aren’t equipped with tools, they will mostly just fly around the ISS, testing out their software. The eventual goal is to have a fleet of these robots flying around in formation, fixing things, docking with and moving things about, and autonomously looking for misplaced items. If SPHERES can also perform EVAs (extra-vehicular activity, space walks), then the risk of being an astronaut would be significantly reduced.

spheresIn recent years there has been a marked shift towards the use of off-the-shelf hardware in space (and military) applications. This is partly due to tighter budgets, and partly because modern technology has become pretty damn sophisticated. As Chris Provencher, SPHERES project manager, said in an interview with Reuters:

We wanted to add communication, a camera, increase the processing capability, accelerometers and other sensors [to the SPHERES]. As we were scratching our heads thinking about what to do, we realized the answer was in our hands. Let’s just use smartphones.

The SPHERES system is currently planned to be in use on the ISS until at least 2017. Combined with NASA’s Robonaut, there are some fears that this is the beginning of a trend where astronauts are replaced entirely by robots. But considering how long it would take to visit a nearby star, maybe that’s not such a bad thing. At least until all of the necessary terraforming have been carried out in advance of the settlers.

So perhaps robots will only be used to do the heavy lifting, or the work that is too dull, dangerous or dirty for regular astronauts – just like drones. Hopefully, they won’t be militarized though. We all saw how that went! And be sure to check out this video of SPHERES being upgraded with Project Tango, courtesy of Google’s Advanced Technology and Projects group (ATAP):


Sources:
nasa.gov, extremetech.com, techtimes.com

News from Space: NASA taking Suggestions on Europa

europa_image_0The Jovian moon of Europa remains a mystery that is just dying to be cracked. Although covered in ice, scientists have long understood that tidal forces caused by its proximity to Jupiter have created a warm interior, one which can sustain warm oceans beneath the surface. In the coming years, NASA wants to fly a mission to this planet so we can finally get a look at what, if anything, is lurking beneath that icy crust.

Perhaps emboldened by the success of the Curiosity Rover and the plans for a manned mission to Mars in 2030, NASA has several possible plans for what a Europa mission might look like. If the budget environment proves hospital, then NASA will likely send a satellite that will perform several orbits of the moon, a series of flybys on it, and scout the surface for science and potential landing sites.

europa_reportTowards this end, they are looking for proposals for science instruments specifically tailored to the task. And within a year’s time, they plan to select 20 from a list of those proposed for the mission. At which point, the selectees will have $25 million to do a more advanced concept study. As John Grunsfeld, associate administrator for NASA’s science mission directorate, stated:

The possibility of life on Europa is a motivating force for scientists and engineers around the world. This solicitation will select instruments which may provide a big leap in our search to answer the question: are we alone in the universe?

The Europa mission is not a guarantee, and it’s unclear just how much money will be allocated to it in the long run. NASA has requested $15 million in fiscal 2015 for the mission, but the mission will naturally be subject to budgetary approvals by Congress. If it passes all obstacles, it would fly sometime in the 2020s, according to information released with the budget earlier this year.

europa-lander-2In April, NASA sent out a request for information to interested potential participants on the mission itself, which it plans to cost less than $1 billion (excluding launch costs). Besides its desire to look for landing sites, NASA said the instruments should also be targeted to meet the National Resource Council’s (NRC) Planetary Decadal Survey’s desires for science on Europa.

In NASA’s words, these are what those objectives are:

  • Characterize the extent of the ocean and its relation to the deeper interior;
  • Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange;
  • Determine global surface, compositions and chemistry, especially as related to habitability;
  • Understand the formation of surface features, including sites of recent or current activity, identify and characterize candidate sites for future detailed exploration;
  • Understand Europa’s space environment and interaction with the magnetosphere.

JIMO_Europa_Lander_MissionAccording to the agency, any instrument proposal must meet NASA’s landing scout goal or the NRC goals. The instruments must also be highly protected against the harsh radiation, and meet planetary protection requirements to ensure no extraterrestrial life is contaminated with our own. In essence, this means than any instruments must be safeguarded against carrying bacteria that could play havoc with Europan microbes or (do we dare to dream!) more complex organisms.

Solicitations are due by Oct. 17, so if you’ve got an idea and think it might make the cut, consult the following solicitation page and have a look at what NASA is looking for. Personally, I got nothing. But that’s why they don’t pay me the big bucks! No, like most of humanity, I will simply be sitting back and hoping that a mission to Europa happens within my lifetime, and that it uncovers – to quote Arthur C. Clarke’s 201o: Odyssey Two – “something wonderful”…

Source: universetoday.com, nspires.nasaprs.com