The Future of Naval Warfare: Supersonic Submarines

Chinese_subsResearchers in China are reporting that they’ve taken a big step towards creating a truly revolutionary submarine. For years, the nation has been dedicated to the expansion of the People’s Liberation Army Navy (PLAN) Submarine Force. That latest announcement in this plan is the intended development of supersonic submarines. And if feasible, it could a sub to travel from Shanghai to San Francisco a distance of about 9650 km (6,000 miles) – in just 100 minutes.

The research behind this proposed development comes from the Harbin Institute of Technology’s Complex Flow and Heat Transfer Lab, where researchers are applying a concept known as supercavitation. Originally conceived by the Soviets in the ’60s to create high-speed torpedoes, the Harbin researchers are looking to take things to the next level by applying it to a much larger sea-faring vessel.

https://i0.wp.com/www.extremetech.com/wp-content/uploads/2014/08/supercavitation-diagram.jpgAs is commonly known, objects moving through water have a harder time than those moving through air. While automobiles are only able to travel so fast before succumbing to wind resistance (aka. drag), surface ships and submarines must content with fluid-dynamics, which are much more tricky. Compared to air, water is far more dense and viscous, which means more energy is required to get up to a certain speed.

Even the most modern and advanced nuclear submarine cannot travel much faster than 40 knots (74 kph/46 mph), and the same applies to torpedoes. Higher speeds are possible, but would require so much power to make it impractical. That’s where supercavitation comes into play, a technique devised with the explicit purpose of creating high-speed torpedoes during the Cold War.

Shkval_headThis technique gets around the drag of water by creating a bubble of gas for the object to travel through. In the hands of the Soviet’s, the research resulted in the Shkval torpedo, which uses a special nose cone to create the supercavitation envelope that allows it to travel through the water at speeds of up to 200 knots (370 kph/230 mph) – much, much faster than the standard torpedoes fielded by the US.

The only other countries with supercavitational weapons are Iran – which most likely reverse-engineered the Russian Shkval – and Germany, the creators of the Superkavitierender Unterwasserlaufkörper (“supercavitating underwater running body”). The US is researching its own supercavitational torpedo, but there’s very little public information available. Meanwhile, China is not only looking to create supercavitating torpedoes, but an underwater vessel.

supercavitational-torpedo-techUnlike previous designs, which had to be launched at speeds of 95 km (60 mph) to create a supercavitation bubble, the method described by the Harbin researchers uses a “special liquid membrane” to reduce friction at low speeds. This liquid is showered over the object to replenish the membrane as it’s worn off by the passage of water, and once the object gets up to speed, it would theoretically use the same nose-cone technique to achieve supercavitation.

In theory, supercavitation could allow for speeds up to the speed of sound — which underwater is 5343 kph (3,320 mph) – which would allow a sub to go from Shanghai to San Francisco in well under two hours. For any nation with a nuclear arsenal – i.e. China, Russia, France, the UK, the US – the ability to deploy nuclear missile subs speedily around the world is certainly desirable.

https://i0.wp.com/grupocaos2007.brinkster.net/supercav2/BancoPruebMini.JPGBut of course, there are some challenges posed by the concept and any ship that is equipped to run on it. For one, it is very difficult to steer a supercavitating vessel and conventional methods (like rudders) don’t work without water contact. Second, developing an underwater engine that’s capable of high velocity over long distances is very difficult. Jet engines do not work underwater and generally, rockets only have enough fuel to burn for a few minutes.

Nuclear power might be a possibility as far as supersonic submarines go, but that’s strictly academic at this point. Li Fengchen, a professor at the Harbin Institute, says their technology isn’t limited to military use. While supersonic submarines and torpedoes are at top of the list, the same technology could also boost civilian transport, or even boost the speed of swimmers. As Li put it:

If a swimsuit can create and hold many tiny bubbles in water, it can significantly reduce the water drag; swimming in water could be as effortless as flying in the sky.

https://storiesbywilliams.files.wordpress.com/2014/09/e1095-chinese_submarine.jpgAs always with such advanced (and potentially weaponized) technology, it’s hard to say how far away it is from real-world application. Given that this is primarily a military research project within China, one can expect that it will remain shrouded in secrecy until it is ready. And if civilian researchers are making good progress, then it’s a fairly safe bet that the military is even further along.

While the future of transit is already exciting – what with hyperloops, aerospace travel, robotaxis and robot cars – the idea that people could travel under the waves as fast as on they could on the Concorde is pretty cool! At the same time, the idea that subs equipped with nuclear missiles could reach our shores within two hours is pretty scary. But futuristic military technology has never been known to inspire warm and fuzzy feelings, has it?

Sources: extremetech.com, scmp.com

The Future is Here: Driverless Army Trucks

TARDECAs Napoleon Bonaparte once said, “An army marches on its belly”. And like most tidbits of military wisdom, this is one that has not changed with the ages. Whether it’s leading an army of war elephants and hoplites through the Alps, a Grande Armee across the Steppes, or a mechanized division through Central Asia, the problem of logistics is always there. For an army to remain effective and alive, it needs to be supplied; and those supply trains has to be kept moving and safe.

In the modern world, this consists of ensuring that troop and supply trucks are protected from the hazards of enemy snipers, rockets, and the all-too-prevalent menace of improvised explosive devices (IEDs). Until now, this consisted of having armed convoys escort armored trucks through hostile terrain and contested areas. But in an age of unmanned aerial vehicles and robotic exoskeletons, it seems only natural that driverless trucks would be the next big thing.

TARDEC1That’s the thinking behind the Autonomous Mobility Appliqué System (AMAS), a program being developed by the U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC) in collaboration with major defense contractor Lockheed Martin. This program, which was demonstrated earlier this month at Fort Hood, Texas, gives full autonomy to convoys to operate in urban environments.

In tests, driverless tactical vehicles were able to navigate hazards and obstacles including pedestrians, oncoming traffic, road intersections, traffic circles and stalled and passing vehicles. Similar to the systems used by the first generation of robotized cars, the AMAS program for the Pentagon’s ground troops uses standard-issue vehicles outfitted with a high-performance LIDAR sensor and a second GPS receiver, locked and loaded with a range of algorithms.

TARDEC-ULV-instrument-panelThat gear, Lockheed said, could be used on virtually any military vehicle, but in these tests was affixed to the Army’s M915 tractor-trailer trucks and to Palletized Loading System vehicles. According to Lockheed, AMAS also gives drivers an automated option to alert, stop and adjust, or take full control under user supervision. David Simon, AMAS program manager for Lockheed Martin Missiles and Fire Control, described the program in a statement:

The AMAS CAD hardware and software performed exactly as designed, and dealt successfully with all of the real-world obstacles that a real-world convoy would encounter.

Under an initial $11 million contract in 2012, Lockheed Martin developed the multiplatform kit which integrates low-cost sensors and control systems with Army and Marine tactical vehicles to enable autonomous operation in convoys. But not only do driverless convoys add a degree of safety under dangerous conditions, they also move the military closer its apparent goal of nearly total autonomous warfare.

squadmissionsupportsystemAMAS algorithms also are used to control the company’s Squad Mission Support System (SMSS), a more distinctive and less conventional six-wheeled unmanned ground vehicle that has been used by soldiers in Afghanistan. Combined with robots, like the Legged Squad Support System (LS3) by Boston Dynamics, the development of driverless trucks is not only a good counter to suicide bombers and IEDs, but part of a larger trend of integrated robotics.

In an age where more and more hardware can be controlled by a remote operator, and grunts are able to rely on robotic equipment to assist them whenever and wherever the 3D’s of hostile territory arise (i.e. dirty, difficult, or dangerous), trucks and armored vehicles that can guide themselves is just the latest in a long line of developments aimed at “unmanning the front lines”.

And of course, there’s a video of the concept in action, courtesy of the U.S. Army and TARDEC:


Sources: wired.com, news.cnet.com, lockheedmartin.com

The Future of Transit: The Solar-Powered Jetliner

skywhale1Solar-powered airplanes have already proven feasible, but only in the sense of single-seat, turboprop powered plane.s When it comes to a long-range, commercial jet aircraft, the field remains pretty sparse so far. But thanks to a Spanish designer, and some unconventional thinking, “whale planes” that are eco-friendly and combine the convenience of air travel with the luxury of a cruise ship might soon be a reality.

Oscar Viñals, from Barcelona, envisioned the “AWWA Sky Whale” concept plane as a mixture of today’s current designs and future concepts that don’t yet exist. The end result is like an Airbus A380, but with considerable expansion and designed to be powered by micro solar panels and four large hybrid electric engines that would rotate to ease takeoff and landing.

skywhale_specsIn addition to reducing noise and pollutants, it would also significantly reduce fuel burned during what is currently one of the least green modes of getting to a destination. Despite the introduction of more fuel-efficient and less polluting turbofan and turboprop engines, the rapid growth of air travel in recent years has contributed to increasing CO2 emissions in the upper atmosphere.

In fact, in the European Union alone, greenhouse gas emissions from aviation increased by a total of 87% between 1990 and 2006. In 2005, global aviation contributed roughly 5% to the overall “radiative forcing” effect that our annual emissions of CO2 have on Global Warning, but the added effects of water vapor and the disruption to cirrus cloud formations also enhances this role to a varying degree.

skywhale4One of the reasons aviation’s role in Climate Change is overlooked is because the focus tends to be on urban infrastructure and automobiles, which account for the vast majority of carbon emissions. But given the current trend of increasing travel, international economic development, and growth in tourist industries, aviation is likely to get a bigger slice of that pie down the road and clearer methods need to be devised.

Hence the concept for the Sky Whale, which Viñals imagines would come with other futuristic components . These include a self-healing skin with adaptable opacity, active wings that change shape as needed, and ceramic and fiber composite materials. He even has a plan for the plane to break apart on an emergency landing, with the wings separating from the fuselage to limit damage to the passenger compartment.

skywhale3The three-story aircraft, which could accomodate 755 passengers, would have a wingspan and height greater than any of today’s biggest carriers – 88 meters in comparison to the 80 meters on an Airbus A380-900 – making it the largest commercial aircraft in existence. However, the combination of active wings (which would also reduce drag) and the hybrid-electric systems would render it the most fuel efficient.

Another thing that Viñals imagines would make it into the design is virtual reality windows – aka. display glass that allows people to go online, watch movies, and experience in-flight entertainment simply by looking outside. Can’t imagine why this would be necessary, as the range of personal devices people are likely to have by this time ought to be entertainment enough. And failing that, the view should be enough to inspire!

skywhale5Naturally, much of this technology – particularly the healing smartskin – is still many years away. But judging by the reaction to his designs, there is definitely some hunger for innovation in how we fly. Given the range of ideas for mass transit (like the Hyperloop, podcars, etc.) and personal transit (robot cars, robotaxis), it’s only a matter of time before the way we fly becomes smarter, sleeker, and cleaner.

Sources: fastcoexist.com, cnn.com, gov.uk, europa.eu

The Future of Transit: (More) Robotaxis and Podcars!

Robotaxi_2getthereIn the course of the past century, science fiction has provided us with many interesting visions of what the future of transportation will look like. And whereas not long ago, many of these seemed like hopeless fantasy – such as the failure of flying cars or robotic automated vehicles to become a reality by 2000  – recent years and developments have seen reality slowly catching up.

Case in point, last year, the European company named “2GetThere” installed a small fleet of automated podcars (aka. robotaxis) in the eco-friendly community of Masdar City. Similarly, the town of San Jose began work on the Personal Rapid Transit System – a series of on-call, point to point transit cars designed to replace the town’s system of taxis and buses, providing an environmentally friendly alternative to traditional mass transit.

London_podcarAnd most recently, the town of Milton Keynes – a sleepy city north of London – that is planning on conducting a podcar system trial run by 2015. Similar to the system at Heathrow Airport, which uses 21 on-call podcars on a  4 km (2.5 mile) stretch of track, the system will consist of a series of pods that will be able to carry two passengers, plus baggage, from the town’s train station to its downtown offices and the shopping district.

Milton Keynes’ plans is much more ambitious, calling for a fleet of 100 vehicles that will travel with far ore independently, albeit in a designated lane with curbs. The trial will assess safety and how people (and animals) react to them. The pods travel at up to 19 km/h (12 mph) and will contain GPS, cameras, and sensors to ensure they don’t crash into anything.

robotaxiAnd if all goes well, the system will be adopted by 2017 and residents will pay little more than a bus fare ($3.20) to travel in automated luxury. Purpose-built in the 1960s, Milton Keynes has an unusual grid layout that makes it an ideal testing ground for a plan that other British cities are seriously considering. Given the dual issues of congestion and pollution in British cities, a system of robotaxis seems like the perfect solution.

In fact, such a solution is ideal when it comes to all major cities around the world. The state of robotics, automation, centralized grids, and the reduced impact electrical transit has compared to gasoline-powered cars and buses, we could be looking at a world where every major city has its own system of robotaxis in the near future.

And I imagine a massive grid of Hyperoops lines will be connecting every major city… The future is likely to be mighty cool! In the meantime, enjoy this video of Heathrow’s podcar system in action:


Sources:
fastcoexist.com, heathrowairport.com

The Future is Here: The Copenhagen Wheel

copenhagen_wheelFans of the cable show Weeds ought to instantly recognize this invention. It was featured as a product invented by one of the characters while living (predictably) in Copenhagen. In addition, it was the subject of news stories, articles, design awards, and a whole lot of public interest. People wanted to get their hands on it, and for obvious reasons.

It’s known as the Copenhagen Wheel, a device invented by MIT SENSEable City Lab back in 2009 to electrify the bicycle. Since that time, engineers at MIT have been working to refine it in preparation for the day when it would be commercially available. And that time has come, as a new company called Superpedestrian announced that it has invested $2.1 million in venture capital to make the device available to the public.

copenhagen_wheel1Superpedestrian founder Assaf Biderman, who is also the SENSEable City lab associate director and one of the creators of the wheel, along with lab director Carlo Ratti, had this to say:

The project touched an exposed nerve somehow. Aside from news coverage and design awards, people were wanting it. Over 14,000 people emailed saying ‘I want to buy it, sell it, make it for you.

Three years after inventing it, Biderman finally decided that it was time to spin off a company to make it happen. MIT filed all the relevant patents, and Superpedestrian acquired exclusive licenses to the Copenhagen Wheel technology. And by late November, they plan to launch the wheel to the public for the very first time.

copenhagen_wheel2And though the much of the facts are being carefully guarded in preparation for the release, some details are already known. For example, the wheel can be fitted to almost any bike, is controlled by sensors in the peddles, and has a power assist feature that doesn’t require any work on the part of the rider. And according to Biderman, its range “will cover the average suburban commute, about 15 miles to and from work and back home.”

On top of that, a regenerative braking system stores energy for later use in a lithium battery. The wheel also comes with an app that allows users to control special features from their smartphone. These include being able to lock and unlock the bike, select motor assistance, and get real-time data about road conditions. An open-source platform called The Superpedestrian SDK also exists to allow developers to make on their own apps.

smartwheelrotatingInterestingly enough,the Copenhagen Wheel also has a rival, who’s appearance on the market seems nothing short of conspiratorial. Its competitor, the FlyKly Smart Wheel, a device which has raised over $150,000 on Kickstarter so far. It is extremely similar to the Copenhagen Wheel in most respects, from its electrical assistance to the fact that it can be integrated via smartphone.

According to Biderman, the appearance of the Smart Wheel is just a coincidence, though it is similar to their product. And her company really doesn’t have to worry about competition, since the Copenhagen Wheel has years of brand recognition and MIT name behind it. In terms of the the target audience, Biderman says that they are looking at targeting city dwellers as well as cyclists:

If you’re an urbanite, you can use it to move all around, and go as far as the edges of most cities with this quite easily. You overcome topographical challenges like hills. The point is to attract more people to cycling.

Though no indication has been given how much an individual unit will cost, it is expected to have a price point that’s competitive with today’s e-bikes.

copenhagen_wheel3The FlyKly Smart Wheel, by comparison, can be pre-ordered for $550 apiece. In total, that campaign has raised $301,867 (their original goal was $100,000) since opening on Oct. 16th. As a result, they have been able to reach their first “stretch goal” of producing a 20″ wheel. If they can reach $500,000 before the campaign closes on Nov. 25th, they will be able to deliver on their other goals: a motor brake and a glow in the dark casing.

For some time, designers and engineers have been trying to find ways to make alternative transportation both effective and attractive. Between these designs and a slew of others that will undoubtedly follow, it looks like e-bicycling may be set to fill that void. Combined with electric cars, self-driving cars, hydrogen cars, robotaxis, podcars, and high speed trains, we could be looking at the revolution in transit that we’ve been waiting for.

Sources: fastcoexist.com(2), kickstarter.com

The Future is Here: The “Attention Powered” Car

attention_powered_CarDriver inattention, tunnel vision, and distraction are all major causes of road accidents. And while the law has certainly attempted to remedy this situation by imposing penalties against driving while on the phone, or driving and texting, the problem remains a statistically relevant one. Luckily, Emotiv and the Royal Automobile Club of Western Australia have joined forces to come up with a brilliant – albeit slightly unusual – solution.

It’s known as the “Attention Powered Car”, an automobile that features a neuroheadset made by Emotiv, creator of a range of electroencephalography-based monitoring gear. Basically, the driver straps on the headset while driving and  then interfaces with custom software to read the driver’s brainwaves. Any lapses in concentration are read by the headset and cause the vehicle to slow down to about 14 km/h (9 mph) as a way of alerting the driver.

emotiv_epocIn fact, the car – a Hyundai i40 – will only run at full capacity when it senses that drivers are giving their full attention to the task at hand. According to Pat Walker, RAC executive general manager:

The impact of inattention is now comparable to the number of deaths and serious injuries caused by speed and drink driving, which are all contributors to Western Australia consistently having the worst fatality rate of any Australian state. Nationally, it is estimated inattention was a factor in 46 percent of fatal crashes.

The prototype design is largely meant to bring attention to the issue of driver distraction, and also serve as a tool for investigating the problem further. Researchers have been using the car (on a track) to test how various tasks, such as switching radio stations or sending a text message, impact a driver’s attention. Factors measured include blink rate and duration, eye movement, and head tilts.

googlecarAnd while novel and pure science fiction gold, the concept is also quite due. Given the improvements made in EEG headsets in recent years, as well as computerized vehicles, it was really just a matter of time before someone realized the potential for combining the technologies to create a safer drive that still relied on a human operator.

While robot cars may be just around the corner, I imagine most people would prefer to still be in control of their vehicle. Allowing for a neuroband-operated vehicle may be just the thing to marry increased safety while avoiding the specter of a future dystopian cliche where robots handle our every need.

RAC WA has also produced a number of videos about the Attention Powered Car, including the one below. To check out others, simply click on this link and prepare to be impressed.


Sources: news.cnet.com, staging.forthebetter.com.au

The Future is Here: Smart Roads for Smart Cars

smart-highwaysWhen it comes to the future of transportation, it is clear that clean energy, automated systems and robot cars will all figure pretty prominently in the mix. But how will this effect our system of roadways and travel infrastructure? This is a question that is often raised whenever futuristic concepts for cars and transportation are showcased. Clearly, they deserve to be modernized as well, with something cleaner and smarter taking their place.

So argues Dutch design firm Studio Roosegaarde, whose ‘smart highway’ concept is set to be unveiled in the Netherlands in 2013. The design involves motion sensors that detect oncoming vehicles and light the way for them, then shut down to reduce energy consumption. Lane markings will use glow-in-the-dark paint to minimize the need for lighting, and another temperature-sensitive paint will be used to show ice warnings when the surface is unusually cold.

smarthighway1The highway also established for priority lanes that will accommodate electrical cars. Studio Roosegard hopes that these will one day l feature induction loops buried beneath the tarmac, which will allow electric car owners to literally charge their cars as they drive. While this concept is not-yet cost effective, the motion sensors and luminescent lane markers will be field tested next year along a 200 meter section of road.

The addition of these features along major highways is expected to reduce incidents of accidents, as well as save energy costs by reducing the reliance on streetlights. In addition, the road markings are expected to have longer-term applications, such as being integrated into a robot vehicle’s intelligent monitoring systems. As automated systems and internal computers become more common, smart highways and smart cars are likely to become integrated through their shared systems.

smarthighwaySustainable architecture advocate Rachel Armstrong sees all this as becoming part of a future where highways are truly multifunctional:

Not only will they light the way, but they will update geo-databases, informing us of traffic accidents, for example.

What’s more, drivers may even have the option of extricating themselves from the driving process and allowing a “self-drive” or autopilot feature to take over, where the vehicle will link up to the highways own navigation charts and find the optimal route to a destination. And, hold on to your hats, this could also become part of a national “drive safe” campaign, where driver’s are required to turn on the autodrive feature if they are past the legal blood-alcohol limit.

robotaxi_sanjoseIn short, smart highways are a proposal that only embraces clean energy and seeks to increase road safety, but seeks to integrate our roadways with emerging transportation technology. It will be very interesting to see what comes of this, especially when you consider the appeal of light rail and self-driving pod cars. For all we know, the future could consist of entirely automated transportation where no one drives anymore and traffic accidents are a thing of the past.

Nice, but think of the damage to the entertainment industry. With driving a thing of the past, what’s to become of car chases? Won’t someone please think of the car chases! Ah well, check out this video of the concept below:


Source:
forumforthefuture.org

 

The Future is Here: Web-Based “Brain” for Robots

AI_robotMy gratitude once again to Nicola Higgins for beating me to the punch yet again! I hope she doesn’t mind that I’m totally posting a separate article, but something like this is just too good to reblog! In what is sure to excite Singularitarians and Futurists and scare the holy bejeezus out of technophobes and those fearing the Robopocalypse, a new web-based artificial brain went online recently, allowing robots to share information and seek help whenever they need it.

It’s called Rapyuta (or the The RoboEarth Cloud Engine), a part of the European Robo Earth project that began in 2011 with the hope of standardizing the way robots perceive the human world. Basically, it is an online database that robots can consult in order to get information about their world and help them make sense of their experiences, post-activation.

robot_internetThe name Rapyuta is taken from the Japanese film by Hayao Miyazaki known as Castle in the Sky, and refers to a place where all the robots live. The project, which involves researchers at five separate European research labs, has produced the database as well as software that robot owners can upload to their machines so that they can connect to the system at any time.

You might say the “brain” is an expression of sympathy for robots, who are no doubt likely to find the world intimidating and confusing once they come online. Now, instead of every robot building up their own idiosyncratic catalog of how to deal with the objects and situations it encounters, Rapyuta would be the place they ask for help when confronted with a novel situation, place or thing.

googlecarIn addition, the web-based service is able to do complicated computation on behalf of a robot. For example, if it needs to work out how to navigate a room, fold an item of clothing or understand human speech, it can simply do an online consultation rather than try to figure it out on its own. In addition, it is believed that robots will be cheaper thanks to this system since it will mean they won’t need to carry all their processing power on board.

Looking ahead, Mohanarajah Gajamohan, technical head of the project at the Swiss Federal Institute of Technology in Zurich, says that the designers believe the system could be particularly useful for drones, self-driving cars or other mobile robots who have to do a lot of number crunching just to get round.

internetDr Heico Sandee, Robo Earth program manager at the Dutch University of Technology in Eindhoven, also highlighted the economic benefits of this new concept. “On-board computation reduces mobility and increases cost,” he said, adding that as wireless data speeds increase, more and more robotic thinking could be offloaded to the web.

But above all, the aim here is about integration. As robots become more and more common and we human beings are forced to live with them amongst us, there could be difficulties. Without access to such a database, those involved in the project and roboticists at large fear that machines will remain on production lines and never live easily alongside humans.

robots_earthAs for those who support and await the Technological Singularity, this could be one such means through which it is achieved. The idea of machines that are capable of network and constantly upgrade their software is a step in the direction of machines that are capable of self-assembling, evolving and upgrading themselves constantly, which will basically result in a rate of progress that we can currently predict.

But on the other side of the debate, there are those who say this smacks of a Skynet-like supercomputer that could provide machines with the means to network, grow smarter, and think of ways of overthrowing their human masters. While I don’t consider myself the technophobic sort, I can certainly see how this invention could be perceived that way.

robots_ideaCreating a means for robots to communicate and contribute to a growing sense of knowledge, effectively letting them take ownership of their own world, does seem kinda like the first step in creating a world where robots no longer need human handlers. Then again, if we’re going to be creating AI, we might want to consider treating them like sentient, dignified beings beforehand, and avoiding any “controversy” when they begin to demand them later.

Gotta admit, when it comes to technophobes and paranoiacs, this kind of stuff is certainly fertile territory! For more information on the Rapyuta Engine, simply click here. And may God help us all!

terminator_judgement_daySource: bbc.co.uk

2013, As Imagined By 1988

bladerunnerTwenty-five years ago, Los Angeles magazine envisioned what the world would look like in the current decade. And unlike Blade Runner, they avoided the cool but standard science fiction allegories – like massive billboards, flying cars and sentient robots – and went straight for the things that seemed entirely possible by contemporary standards.

The cover story of the magazine’s April 3, 1988 edition showed a futuristic downtown L.A. crisscrossed with electrically charged, multi-tiered freeways permeated by self-driving cars. The article itself then imagined a day in the life of the fictional Morrow family of the L.A. suburb Granada Hills, as “profiled” by the magazine in 2013 by science fiction writer Nicole Yorkin.

LAtimes_2013aIronically, the magazine did not envision that it would one day go out of business, or that print media would one day be lurching towards extinction. Nevertheless, the fictional article and the world it detailed were interesting reading. Little wonder then why, earlier this month, the LA Times along with an engineering class at USC, revisited the archives to assess what it predicted correctly versus incorrectly.

Together, pro­fess­or Jerry Lock­en­our and his class made a list of the hits and misses, and what they found paints a very interesting picture of how we predict the future and how its realization so often differs from what we expect. Of the major predictions to be found in LA of the 2013, as well as in the lives of the Morrow family (get it?), here is what they got right:

Smart-Houses:
smart-house_vCe6I_25016In the article, the Morrows are said to begin every morning when their “Smart House” automatically turns on. This consists of all the appliances activating and preparing them breakfast, and no doubt turning on all the environmental controls and opening the shades to get the temperature and ambient lighting just right.

While this isn’t the norm for the American family yet, the past few years have proved a turning point for home devices hooking up with the Internet, to become more programmable and serve our daily needs. And plans are well under way to find a means of networking them all together so they function as one “smart” unit.

Self-Driving Cars:
chevy_env_croppedThe writers of the article predicted that by 2013, cars would come standard with computers that control most of the settings, along with GPS systems for navigation. They also predict self-driving cars, which Google and Chevy are busy working on. In addition to using clean, alternative energy sources, these cars are expected to be able t0 self-drive, much in the same way a pilot puts their plane on auto-pilot. Drivers will also be able to summon the cars to their location, connect wirelessly to the internet, and download apps and updates to keep their software current.

But of course, they got a few things wrong as well. Here they are, the blots on their predictive record:

Homeprinted newspapers:
news_appThe article also predicts that each morning the Morrows would begin their day with a freshly printed newspaper, as rendered by their laser-jet printer. These would be tailor-made, automatically selecting the latest news feeds that would be of most interest to them. What this failed to anticipate was the rise in e-media and the decline of printed media, though hardly anyone would fault them for this. While news has certainly gotten more personal, the use of tablets, ereaders and smartphones is the way the majority of people now read their selected news.

Robot servants and pets:
kenshiro_smallIn what must have seemed like a realistic prediction, but which now comes across as a sci-fi cliche, the Morrows’ home was also supposed to come equipped with a robotic servant that had a southern accent. The family’s son was also greeted every morning by a robot dog that would come to play with him. While we are certainly not there yet, the concept of anthropomorphic robot assistants is becoming more real every day. Consider, for example, the Kenshiro robot (pictured at right), the 3D printed android, or the proposed Roboy, the Swiss-made robotic child. With all of these in the works, a robotic servant or pet doesn’t seem so far-fetched does it?

Summary:
Between these four major predictions and which came to be true, we can see that the future is not such an easy thing to predict. In addition to always being in motion, and subject to acceleration, slowing and sudden changes, the size and shape of it can be very difficult to pin down. No one can say for sure what will be realized and when, or if any of the things we currently take for granted will even be here tomorrow.

Alpha Moon Base at http://www.smallartworks.ca
Alpha Moon Base at http://www.smallartworks.ca

For instance, during the 1960’s and 70’s, it was common practice for futurists and scientists to anticipate that the space race, which had culminated with humans setting foot on the moon in 1969, would continue into the future, and that humanity would be seeing manned outposts on the moon by and commercial space flight by 1999. No one at the time could foresee that a more restrictive budget environment, plus numerous disasters and a thawing of the Cold War, would slow things down in that respect.

In addition, most predictions that took place before the 1980’s completely failed to predict the massive revolution caused by miniaturization and the explosion in digital technology. Many futurist outlooks at the time predicted the rise in AI, but took it for granted that computers would still be the size of a desk and require entire rooms dedicated to their processors. The idea of a computer that could fit on top of a desk, let alone on your lap or in the palm of your hand, must have seemed farfetched.

CyberspaceWhat’s more, few could predict the rise of the internet before the late 1980’s, or what the realization of “cyberspace” would even look like. Whereas writer’s like William Gibson not only predicted but coined the term, he and others seemed to think that interfacing with it would be a matter of cool neon-graphics and avatars, not the clean, page and site sort of interface which it came to be.

And even he failed to predict the rise of such things as email, online shopping, social media and the million other ways the internet is tailored to suit the average person and their daily needs. When it comes right down to it, it is not a dangerous domain permeated by freelance hacker “jockeys” and mega-corporations with their hostile counter-intrusion viruses (aka. Black ICE). Nor is it the social utopia promoting open dialogue and learning that men like Bill Gates and Al Gore predicted it would be in the 1990’s. If anything, it is an libertarian economic and social forum that is more democratic and anarchistic than anyone could have ever predicted.

But of course, that’s just one of many predictions that came about that altered how we see things to come. As a whole, the entire thing has come to be known for being full of shocks and surprises, as well as some familiar faces. In short, the future is an open sea, and there’s no telling which way the winds will blow, or what ships will make it to port ahead of others. All we can do is wait and see, and hopefully trust in our abilities to make good decisions along the way. And of course, the occasional retrospective and issue congratulations for the things we managed to get right doesn’t hurt either!

Sources: factcoexist.com, LATimes.com

Should We Be Afraid? A List for 2013

emerg_techIn a recent study, the John J. Reilly Center at University of Notre Dame published a rather list of possible threats that could be seen in the new year. The study, which was called “Emerging Ethical Dilemmas and Policy Issues in Science and Technology” sought to address all the likely threats people might face as a result of all developments and changes made of late, particularly in the fields of medical research, autonomous machines, 3D printing, Climate Change and enhancements.

The list contained eleven articles, presented in random order so people can assess what they think is the most important and vote accordingly. And of course, each one was detailed and sourced so as to ensure people understood the nature of the issue and where the information was obtained. They included:

1. Personalized Medicine:
dna_selfassemblyWithin the last ten years, the creation of fast, low-cost genetic sequencing has given the public direct access to genome sequencing and analysis, with little or no guidance from physicians or genetic counselors on how to process the information. Genetic testing may result in prevention and early detection of diseases and conditions, but may also create a new set of moral, legal, ethical, and policy issues surrounding the use of these tests. These include equal access, privacy, terms of use, accuracy, and the possibility of an age of eugenics.

2. Hacking medical devices:
pacemakerThough no reported incidents have taken place (yet), there is concern that wireless medical devices could prove vulnerable to hacking. The US Government Accountability Office recently released a report warning of this while Barnaby Jack – a hacker and director of embedded device security at IOActive Inc. – demonstrated the vulnerability of a pacemaker by breaching the security of the wireless device from his laptop and reprogramming it to deliver an 830-volt shock. Because many devices are programmed to allow doctors easy access in case reprogramming is necessary in an emergency, the design of many of these devices is not geared toward security.

3. Driverless zipcars:
googlecarIn three states – Nevada, Florida, and California – it is now legal for Google to operate its driverless cars. A human in the vehicle is still required, but not at the controls. Google also plans to marry this idea to the zipcar, fleets of automobiles shared by a group of users on an as-needed basis and sharing in costs. These fully automated zipcars will change the way people travel but also the entire urban/suburban landscape. And once it gets going, ethical questions surrounding access, oversight, legality and safety are naturally likely to emerge.

4. 3-D Printing:
AR-153D printing has astounded many scientists and researchers thanks to the sheer number of possibilities it has created for manufacturing. At the same time, there is concern that some usages might be unethical, illegal, and just plain dangerous. Take for example, recent effort by groups such as Distributed Defense, a group intent on using 3D printers to create “Wiki-weapons”, or the possibility that DNA assembling and bioprinting could yield infectious or dangerous agents.

5. Adaptation to Climate Change:
climatewarsThe effects of climate change are likely to be felt differently by different people’s around the world. Geography plays a role in susceptibility, but a nation’s respective level of development is also intrinsic to how its citizens are likely to adapt. What’s more, we need to address how we intend to manage and manipulate wild species and nature in order to preserve biodiversity.This warrants an ethical discussion, not to mention suggestions of how we will address it when it comes.

6. Counterfeit Pharmaceuticals:
Syringe___Spritze___by_F4U_DraconiXIn developing nations, where life saving drugs are most needed, low-quality and counterfeit pharmaceuticals are extremely common. Detecting such drugs requires the use of expensive equipment which is often unavailable, and expanding trade in pharmaceuticals is giving rise to the need to establish legal measures to combat foreign markets being flooded with cheap or ineffective knock-offs.

7. Autonomous Systems:
X-47BWar machines and other robotic systems are evolving to the point that they can do away with human controllers or oversight. In the coming decades, machines that can perform surgery, carry out airstrikes, diffuse bombs and even conduct research and development are likely to be created, giving rise to a myriad of ethical, safety and existential issues. Debate needs to be fostered on how this will effect us and what steps should be taken to ensure that the outcome is foreseeable and controllable.

8. Human-animal hybrids:
human animal hybrid
Is interspecies research the next frontier in understanding humanity and curing disease, or a slippery slope, rife with ethical dilemmas, toward creating new species? So far, scientists have kept experimentation with human-animal hybrids on the cellular level and have recieved support for their research goals. But to some, even modest experiments involving animal embryos and human stem cells are ethical violation. An examination of the long-term goals and potential consequences is arguably needed.

9. Wireless technology:
vortex-radio-waves-348x196Mobile devices, PDAs and wireless connectivity are having a profound effect in developed nations, with the rate of data usage doubling on an annual basis. As a result, telecommunications and government agencies are under intense pressure to regulate the radio frequency spectrum. The very way government and society does business, communicates, and conducts its most critical missions is changing rapidly. As such, a policy conversation is needed about how to make the most effective use of the precious radio spectrum, and to close the digital access divide for underdeveloped populations.

10. Data collection/privacy:
privacy1With all the data that is being transmitted on a daily basis, the issue of privacy is a major concern that is growing all the time. Considering the amount of personal information a person gives simply to participate in a social network, establish an email account, or install software to their computer, it is no surprise that hacking and identity theft are also major conerns. And now that data storage, microprocessors and cloud computing have become inexpensive and so widespread, a discussion on what kinds of information gathering and how quickly a person should be willing to surrender details about their life needs to be had.

11. Human enhancements:
transhumanismA tremendous amount of progress has been made in recent decades when it comes to prosthetic, neurological, pharmaceutical and therapeutic devices and methods. Naturally, there is warranted concern that progress in these fields will reach past addressing disabilities and restorative measures and venture into the realm of pure enhancement. With the line between biological and artificial being blurred, many are concerned that we may very well be entering into an era where the two are indistinguishable, and where cybernetic, biotechnological and other enhancements lead to a new form of competition where people must alter their bodies in order to maintain their jobs or avoid behind left behind.

Feel scared yet? Well you shouldn’t. The issue here is about remaining informed about possible threats, likely scenarios, and how we as people can address and deal with them now and later. If there’s one thing we should always keep in mind, it is that the future is always in the process of formation. What we do at any given time controls the shape of it and together we are always deciding what kind of world we want to live in. Things only change because all of us, either through action or inaction, allow them to. And if we want things to go a certain way, we need to be prepared to learn all we can about the causes, consequences, and likely outcomes of every scenario.

To view the whole report, follow the link below. And to vote on which issue you think is the most important, click here.

Source: reilly.nd.edu