The Future of Medicine: Improved Malaria Vaccine

flu_vaccineOf the many advances made by medical science in the past century, vaccinations are arguably the greatest. With the ability to inoculate people against infection, diseases like yellow fever, measles, rubella, mumps, typhoid, tetanus, polio, tuberculosis, and even the common flu have become controllable – if not eliminated. Nevertheless, medical researchers agree that there are still some things that can be improved upon when it comes to vaccinations.

Beyond the controversies surrounding a supposed link between vaccinations and autism, there is the simple fact that the current method of inoculating people is rather invasive. Basically, it requires people to sit through the rather uncomfortable process of being stuck with a needle, oftentimes in an uncomfortable place (like the shoulder). Luckily, many researchers are working on a way to immunize people using gentler methods.

malaria_vaccineAt the University College Cork in Ireland, for example, scientists have just finished pre-clinical testing on an experimental malaria vaccine that is delivered through the skin. To deliver the vaccine into the body, the researchers used a skin patch with arrays of tiny silicon microneedles that painlessly create temporary pores. These pores provide an entry point for the vaccine to flow into the skin, as the patch dissolves and releases the drug.

To make the vaccine, the team used a live adenovirus similar to the virus that causes the common cold, but which they engineered to be safer and produce the same protein as the parasite that causes malaria. Adenoviruses are one of the most powerful vaccine platforms scientists have tested, and the one they used produced strong immunity responses to the malaria antigen with lower doses of the vaccine.

TB_microneedlesThe research showed that the administration of the vaccine with the microneedle patch solves a shortcoming related to this type of vaccine, which is inducing immunity to the viral vector – that is, to the vaccine itself. By overcoming this obstacle, the logistics and costs of vaccination could be simpler and cheaper as it would not require boosters to be made with different strains. Besides, with no needles or pain involved, there’s bigger potential to reach more people requiring inoculation.

This is similar to the array used by researchers at King’s College in London, who are also developing a patch for possible HIV vaccine delivery. Researchers at University of Washington used a similar method last year to deliver the tuberculosis vaccine. The method is an improvement on this type of vaccine delivery since it is painless and non-invasive. It’s use is also being researched in relation to other infections, including Ebola and HIV.

The details of the research appeared in the journal Nature. Lead researcher, Dr. Anne Moore, is set to negotiate with Silicon Valley investors and technology companies to commercialize the vaccine.

Sources: gizmag.com, (2), ucc.ie, nature.com

The Future of Medicine: Microneedle Patch

TB-resTubercle bacillus, aka. Tuberculosis or TB, is a very common, very infectious, and if untreated, very lethal disease. A well dated illness, its origins can be traced back to early Neolithic Revolution, and is often attributed to animal husbandry (specifically, the domestication of bovines). And in terms of the number of people carrying it, and the number of deaths associated with it, it is second only to HIV.

Because of this and the fact that the disease remains incurable – the only way to combat it is with early detection or experimental vaccines – it is obvious why medical researchers are looking for better ways to detect it. Currently, the standard test for tuberculosis involves inserting a hypodermic needle into a person’s arm at a very precise angle and depth, using a small trace of genetically modified TB to elicit an immuno-reaction.

TB_microneedlesAs anyone who has undergone this test knows (as a teacher, I have had to endure it twice!), it is not a very efficient or cost effective way of detecting the deadly virus. In addition to being uncomfortable, the telltale symptoms can days to manifest themselves. Hence why Researchers at the University of Washington hope to replace this test with a painless, near-automated alternative – a microneedle patch that they say is more precise and even biodegradable.

For their study, which was recently presented in the journal Advanced Healthcare Materials, the scientists used microneedles made from chitin – the material that makes up the shells sea creatures and insects and is biodegradable. Each needle is 750 micrometers long (1/40th of an inch) and is coated with the purified protein derivative used to test for tuberculosis.

TB_virusIn terms of its application, all people need do is put it on like a bandage, which ought to make testing on children much easier. For the sake of testing it, the team tested its microneedle patch on guinea pigs and found that the reaction that occurs via the hypodermic needle test also appeared using the patch. But the best aspect of it is the fact that the patch does not require any invasive or difficult procedures.

In a school news release, Marco Rolandi – assistant professor of materials science and engineering at the University of Washington and lead author of the study – had the following to say:

With a microneedle test there’s little room for user error, because the depth of delivery is determined by the microneedle length rather than the needle-insertion angle. This test is painless and easier to administer than the traditional skin test with a hypodermic needle.

medical technologyThe researchers report that they now plan to test the needle patch on humans and hope to make the patch available in the near future. However, the long-term benefits may go beyond stopping TB, as Rolandi and his team hope that similar patches will be developed for other diagnostic tests, such as those used to detect allergies. As anyone who has undergone an allergen test will tell you (again, twice!), its no picnic being pricked and scraped by needles!

As always, the future of medicine appears to be characterized by early detection, lower costs, and less invasive measures.

Sources: news.cnet.com, washington,edu, who.nt