The Future of Medicine: Improved Malaria Vaccine

flu_vaccineOf the many advances made by medical science in the past century, vaccinations are arguably the greatest. With the ability to inoculate people against infection, diseases like yellow fever, measles, rubella, mumps, typhoid, tetanus, polio, tuberculosis, and even the common flu have become controllable – if not eliminated. Nevertheless, medical researchers agree that there are still some things that can be improved upon when it comes to vaccinations.

Beyond the controversies surrounding a supposed link between vaccinations and autism, there is the simple fact that the current method of inoculating people is rather invasive. Basically, it requires people to sit through the rather uncomfortable process of being stuck with a needle, oftentimes in an uncomfortable place (like the shoulder). Luckily, many researchers are working on a way to immunize people using gentler methods.

malaria_vaccineAt the University College Cork in Ireland, for example, scientists have just finished pre-clinical testing on an experimental malaria vaccine that is delivered through the skin. To deliver the vaccine into the body, the researchers used a skin patch with arrays of tiny silicon microneedles that painlessly create temporary pores. These pores provide an entry point for the vaccine to flow into the skin, as the patch dissolves and releases the drug.

To make the vaccine, the team used a live adenovirus similar to the virus that causes the common cold, but which they engineered to be safer and produce the same protein as the parasite that causes malaria. Adenoviruses are one of the most powerful vaccine platforms scientists have tested, and the one they used produced strong immunity responses to the malaria antigen with lower doses of the vaccine.

TB_microneedlesThe research showed that the administration of the vaccine with the microneedle patch solves a shortcoming related to this type of vaccine, which is inducing immunity to the viral vector – that is, to the vaccine itself. By overcoming this obstacle, the logistics and costs of vaccination could be simpler and cheaper as it would not require boosters to be made with different strains. Besides, with no needles or pain involved, there’s bigger potential to reach more people requiring inoculation.

This is similar to the array used by researchers at King’s College in London, who are also developing a patch for possible HIV vaccine delivery. Researchers at University of Washington used a similar method last year to deliver the tuberculosis vaccine. The method is an improvement on this type of vaccine delivery since it is painless and non-invasive. It’s use is also being researched in relation to other infections, including Ebola and HIV.

The details of the research appeared in the journal Nature. Lead researcher, Dr. Anne Moore, is set to negotiate with Silicon Valley investors and technology companies to commercialize the vaccine.

Sources:, (2),,

The Future of Medicine: Tiny Bladder and Flashlight Sensors

heart_patchesThere’s seems to be no shortage of medical breakthroughs these days! Whether it’s bionic limbs, 3-D printed prosthetic devices, bioprinting, new vaccines and medicines, nanoparticles, or embedded microsensors, researchers and medical scientists are bringing innovation and technological advancement together to create new possibilities. And in recent months, two breakthrough in particular have bbecome the focus of attention, offering the possibility of smarter surgery and health monitoring.

First up, there’s the tiny bladder sensor that is being developed by the Norwegian research group SINTEF. When it comes to patients suffering from paralysis, the fact that they cannot feel when their bladders are full, para and quadriplegics often suffer from pressure build-up that can cause damage to the bladder and kidneys. This sensor would offer a less invasive means of monitoring their condition, to see if surgery is required or if medication will suffice.

pressuresensorPresently, doctors insert a catheter into the patient’s urethra and fill their bladder with saline solution, a process which is not only uncomfortable but is claimed to provide an inaccurate picture of what’s going on. By contrast, this sensor can be injected directly into the patients directly through the skin, and could conceivably stay in place for months or even years, providing readings without any discomfort, and without requiring the bladder to be filled mechanically.

Patients would also able to move around normally, plus the risk of infection would reportedly be reduced. Currently readings are transmitted from the prototypes via a thin wire that extents from the senor out through the skin, although it is hoped that subsequent versions could transmit wirelessly – most likely to the patient’s smartphone. And given that SINTEF’s resume includes making sensors for the CERN particle collider, you can be confident these sensors will work!

senor_cern_600Next month, a clinical trial involving three spinal injury patients is scheduled to begin at Norway’s Sunnaas Hospital. Down the road, the group plans to conduct trials involving 20 to 30 test subjects. Although they’re currently about to be tested in the bladder, the sensors could conceivably be used to measure pressure almost anywhere in the body. Conceivably, sensors that monitor blood pressure and warn of aneurisms or stroke could be developed.

Equally impressive is the tiny, doughnut-shaped sensor being developed by Prof. F. Levent Degertekin and his research group at the George W. Woodruff School of Mechanical Engineering at Georgia Tech. Designed to assist doctors as they perform surgery on the heart or blood vessels, this device could provide some much needed (ahem) illumination. Currently, doctors and scientists rely on images provided by cross-sectional ultrasounds, which are limited in terms of the information they provide.

tiny_flashlightAs Degertekin explains:

If you’re a doctor, you want to see what is going on inside the arteries and inside the heart, but most of the devices being used for this today provide only cross-sectional images. If you have an artery that is totally blocked, for example, you need a system that tells you what’s in front of you. You need to see the front, back, and sidewalls altogether.

That’s where their new chip comes into play. Described as a “flashlight” for looking inside the human body, it’s basically a tiny doughnut-shaped sensor measuring 1.5 millimeters (less than a tenth of an inch) across, with the hole set up to take a wire that would guide it through cardiac catheterization procedures. In that tiny space, the researchers were able to cram 56 ultrasound transmitting elements and 48 receiving elements.

georgia-tech-flashlight-vessels-arteries-designboom03So that the mini monitor doesn’t boil patients’ blood by generating too much heat, it’s designed to shut its sensors down when they’re not in use. In a statement released from the university, Degertekin explained how the sensor will help doctors to better perform life-saving operations:

Our device will allow doctors to see the whole volume that is in front of them within a blood vessel. This will give cardiologists the equivalent of a flashlight so they can see blockages ahead of them in occluded arteries. It has the potential for reducing the amount of surgery that must be done to clear these vessels.

Next up are the usual animal studies and clinical trials, which Degertekin hopes will be conducted by licensing the technology to a medical diagnostic firm. The researchers are also going to see if they can make their device even smaller- small enough to fit on a 400-micron-diameter guide wire, which is roughly four times the diameter of a human hair. At that size, this sensor will be able to provide detailed, on-the-spot information about any part of the body, and go wherever doctors can guide it.

Such is the nature of the new age of medicine: smaller, smarter, and less invasive, providing better information to both save lives and improve quality of life. Now if we can just find a cure for the common cold, we’d be in business!