China Blocks Google for 25th Anniversary of Tiananmen Square

tiananmen-square-1989-tankIn preparation for the 25th anniversary of the Tiananmen Square Massacre (aka. the June 4th Incident), Chinese authorities decided to begin blocking Google. It’s believed that the blockade is tied to this week’s 25th anniversary of the 1989 Tiananmen Square Massacre where the People’s Liberation Army cracked down on pro-democracy demonstrators. Each year, the Chinese government censors the web in an effort to limit protests against the thwarted uprising.

Aside from Google, several internet services were blocked or censored in advance, including social networks and other web communication tools. Though the Chinese government has not yet confirmed this, countless Chinese users have discovered Google’s services to be inaccessible since the last week of May. In addition, a report from GreatFire.org claimed that the government appeared to have begun targeting Google Inc’s main search engine and Gmail since at least the last week of May, making them inaccessible to many users in China.

chinese_hackerThe report added that the last time it monitored such a block was in 2012, when it only lasted 12 hours. At is states:

It is not clear that the block is a temporary measure around the anniversary or a permanent block. But because the block has lasted for four days, it’s more likely that Google will be severely disrupted and barely usable from now on.

Asked about the disruptions, a Google spokesman said: “We’ve checked extensively and there’s nothing wrong on our end.” And Google’s own transparency report, which shows details about its global traffic, showed lower levels of activity from China starting from about Friday, which could indicate a significant amount of disruption. Other major social media sites – such as Twitter and Facebook and Google’s own Youtube – are already blocked in the country.

A Google logo is seen at the entrance to the company's offices in TorontoOf course, this should come as no surprise, given the way this anniversary is received by Chinese officials. For the ruling Communist Party, the 1989 demonstrations that clogged Tiananmen Square in Beijing and spread to other cities remain taboo, particularly on their 25th anniversary. When June rolls around each year and the Tiananmen Square Massacre is commemorated around the world, including in Hong Kong, China’s ruling party typically conducts a web crackdown.

It’s not uncommon for Chinese censors to block certain comments from being made even on China-based company services, like Weibo, China’s own version of Twitter. And China also applies pressure to search engines like Baidu in their country in order to ensure that censorship filters are in place. And as with previous years, the run-up to the anniversary has been marked by detentions, increased security in Beijing and tighter controls on the Internet.

tiananmen_square_vigilThis year, the detainees included prominent rights lawyer Pu Zhiqiang and Chinese-born Australian artist Guo Jian, a former Chinese soldier who last week gave an interview to the Financial Times about the crackdown. And as usual, the Chinese government made a statement in which it once again defended its decision to use military force against the pro-democracy demonstrators who gathered in the Square twenty-five years ago.

The statement came from Foreign Ministry spokesman Hong Lei during a daily news briefing, in which he said:

The Chinese government long ago reached a conclusion about the political turmoil at the end of the 1980s. In the last three decades and more of reform and opening up, China’s enormous achievements in social and economic development have received worldwide attention. The building of democracy and the rule of law have continued to be perfected. It can be said that the road to socialism with Chinese characteristics which we follow today accords with China’s national condition and the basic interests of the vast majority of China’s people, which is the aspiration of all China’s people.

tiananmen_square_vigil2On the subject of why Google was being targeted, Hong said only that the government “manages the Internet in accordance with the law”, which is consistent with the state’s position with all web-based censorship. When asked about the jailing of dissidents, Hong replied that “In China there are only law breakers — there are no so-called dissidents.” He also stressed once again that all departments of the Chinese government “consistently act in accordance with the law.”

For years now, Google has had a contentious relationship with China, which began with the company had once offering its search services to the world’s second largest economy. However, due to issues over censorship, Google decided to move its Chinese search engine to Hong Kong, effectively allowing them to operate outside the rules and regulations of the Chinese government. But as China demonstrated these past few weeks, it still has the ability to block the flow of traffic from Hong Kong into the mainland. 

tiananmen_square_vigil3It also aptly demonstrated just how much it fears the specter of Tiananmen Square, even some twenty-five years later. From clamping down on their people’s ability to learn more about the massacre, to clamping down on even the possibility of protest in advance, to continually denying any wrongdoing and suppressing information on the number of people killed, the legacy of Tiananmen Square continues to expose the blatant hypocrisy and denial of the Communist Party of China.

If history has taught us anything, it is that the fall of a dictatorship usually begins with one terrible mistake. The state of China committed that mistake a quarter of a century ago, and since then has relied on state-sanctioned economic growth in order to justify its existence. But in so doing, they’ve essentially created a Catch 22 for themselves. Continued economic growth ensures greater material wealth for more and more of its people. And a burgeoning digital-age economy means more and more access to information for its citizens.

In short, the CPC is screwed. And I for one would be happy to see them gone! Lord knows they deserve it, and the Chinese people would be better off without them, no matter what they try to insist. So on this historic anniversary of the Tiananmen Massacre, I invite the CPC to EAT A DICK! And to the people still living under their hypocritical rule, please know that you are not alone. Hang in there, and wait for the day when these bastards join all the other reprehensible dick-heads on the ash heap of history!

Sources: cnet.com, reuters.com, (2)

The Future is Here: Roombot Transforming Furniture

roombots_tableRobotic arms and other mechanisms have long been used to make or assemble furniture; but thus far, no one has ever created robots that are capable of becoming furniture. However, Swiss researchers are aiming to change that with Roombots, a brand of reconfigurable robotic modules that connect to each other to change shape and transform into different types of furniture, based on the needs and specifications of users.

Created by the Biorobotics Laboratory (BioRob) at École polytechnique fédérale de Lausanne (EPFL), the self-assembling Roombots attach to each other via connectors which enables them to take on the desired shape. The team’s main goal is to create self-assembling interactive furniture that can be used in a variety of ways. They were designed primarily for the sake of helping the disabled or elderly by morphing to suit their needs.

roombots_unpackLike LEGO bricks, Roombots can be stacked upon each other to create various structures and/or combined with furniture and other objects, changing not only their shape, but also and functionality. For instance, a person lying down on a Roombot bed could slowly be moved into a seated position, or a table could scoot over to a corner or tilt itself to help a book slide into a person’s hands. The team has solved a number of significant milestones, such as the having the Roombots move freely, to bring all this multi-functionality closer.

Each 22 cm-long module (which is made up of four half-spheres) has a wireless connection, a battery, and three motors that allow the module to pivot with three degrees of freedom. Each modules also has retractable “claws” that are used to attach to other pieces to form larger structures. With a series of rotations and connections, the modules can change shape and become any of a variety of objects. A special surface with holes adapted to the Roombots’ mechanical claws can also allow the modules to anchor to a wall or floor.

roombots_configThe Roombots can even climb up a wall or over a step, when the surface is outfitted with connector plates. They’re are also capable of picking up connector plates and arranging them to form, say, a table’s surface. Massimo Vespignani, a PhD student at BioRob, explained the purpose of this design and the advantages in a recent interview with Gizmag:

We start from a group of Roombot modules that might be stacked together for storage. The modules detach from this pile to form structures of two or more modules. At this point they can start moving around the room in what we call off-grid locomotion…

A single module can autonomously reach any position on a plane (this being on the floor, walls, or ceiling), and overcome a concave edge. In order to go over convex edges two modules need to collaborate…

The advantage would be that the modules can be tightly packed together for transportation and then can reconfigure into any type of structure (for example a robotic manipulator)…

We can ‘augment’ existing furniture by placing compatible connectors on it and attaching Roombots modules to allow it to move around the house.

roombots_boxThe range of applications for these kind of robotics is virtually infinite. For example, as seen in the video below, a series of Roombots as feet on a table that not only let it move around the room and come to the owner, but adjust its height as well. Auke Ijspeert, head of the Biorob, envisions that this type of customization could be used for physically challenged people who could greatly benefit from furniture that adapts to their needs and movements.

As he said in a recent statement:

It could be very useful for disabled individuals to be able to ask objects to come closer to them, or to move out of the way. [They could also be used as] ‘Lego blocks’ [for makers to] find their own function and applications.

Meanwhile, design students at ENSCI Les Ateliers in France have come up with several more ideas for uses of Roombots, such as flower pots that can move from window to window around a building and modular lighting components and sound systems. Similar to the MIT’s more complex self-assembling M-Blocks – which are programmable cube robots with no external moving parts – Roombots represent a step in the direction of self-assembling robots that are capable of taking on just about any task.

roombotsFor instance, imagine a series of small robotic modules that could be used for tasks like repairing bridges or buildings during emergencies. Simply release them from their container and feed them the instructions, and they assemble to prop up an earthquake-stricken structure or a fallen bridge. At the same time, it is a step in the direction of smart matter and nanotechnology, a futuristic vision that sees the very building blocks of everyday objects as programmable, reconfiguring materials that can shape or properties as needed.

To get a closer, more detailed idea of what the Roombot can do, check out the video below from EPFL News:


Source:
gizmag.com, cnet.com, kurzweilai.net

News from Mars: Martian Water and Earth Organisms

curiosity_peakThis August, the Curiosity Rover will be celebrating its second anniversary of roving around the Red Planet. And ever since it made landfall, Curiosity and the Mars Science Laboratory has repeatedly uncovered signs that Mars was once very like Earth. Basically, it has become undeniable that water once flowed freely over the surface of this barren and uninhabitable world. And this finding, much to the delight of futurists and sci-fi enthusiasts everywhere, is likely to pave the way for human settlement.

Liquid water disappeared from Mars’ surface millions of years ago, leaving behind tantalizing clues about the planet’s ancient past—clues that the MSL has been deciphering for the past 22 months. This began last year when Curiosity found rounded pebbles in the Glenelg region, an indication that a stream once flowed at the site. This was followed by the discovery of rocky outcroppings where the remains of an ancient stream bed consisting of water-worn gravel that was washed down from the rim of Gale Crater.

mountsharp_galecraterThe rover has since moved to a location about 6.5 kilometers (4 miles) away from the Gale Crater landing site, where scientists expect to make even more discoveries. The new location is named Kimberly, after a region of northwestern Australia. As Dawn Sumner, a UC Davis geology professor and co-investigator for NASA’s Mars Science Laboratory team, explained:

Our findings are showing that Mars is a planet that was once a whole lot like Earth. All the rocks we’ve seen on this mission are sediments that have been deposited by water. We’ve found almost no sandstone deposited by wind.

Sumner is working from Curiosity mission control at NASA’s Jet Propulsion Laboratory in Pasadena while on sabbatical from UC Davis, exploring whether the planet ever had an environment capable of supporting microbial life. She is also one of several UC scientists and engineers who have been vital to the success of the Curiosity mission, which is part of NASA’s long-term plan to pave the way for sending astronauts to Mars.

Living-Mars.2In that vein, research continues here on Earth to see exactly what kind of life can survive in the harsh Martian environment. And now,  research suggests that methanogens – among the simplest and oldest organisms on Earth – could survive on Mars. These microorganisms are typically found in swamps and marshes, where they use hydrogen as their energy source and carbon dioxide as their carbon source to produce methane (aka. natural gas).

As an anaerobic bacteria, methanogens don’t require require oxygen or organic nutrients to live, and are non-photosynthetic. Hence, they would be able to exist in sub-surface environments and would therefore be ideal candidates for life on Mars. Rebecca Mickol, a doctoral student in space and planetary sciences at the University of Arkansas, subjected two species of methanogens to Martian conditions to see how they would fair on the Red Planet.

methanogens485These strains included Methanothermobacter wolfeii and Methanobacterium formicicum, both of which survived the Martian freeze-thaw cycles that Mickol replicated in her experiments. This consisted of testing the species for their ability to withstand Martian freeze-thaw cycles that are below the organisms’ ideal growth temperatures. As she explained it:

The surface temperature on Mars varies widely, often ranging between minus 90 degrees Celsius and 27 degrees Celsius over one Martian day. If any life were to exist on Mars right now, it would at least have to survive that temperature range. The survival of these two methanogen species exposed to long-term freeze/thaw cycles suggests methanogens could potentially inhabit the subsurface of Mars.

Mickol conducted the study with Timothy Kral, professor of biological sciences in the Arkansas Center for Space and Planetary Sciences and lead scientist on the project. She presented her work at the 2014 General Meeting of the American Society for Microbiology, which was held from May 17th to 20th in Boston.

maven_atmosphereThe two species were selected because one is a hyperthermophile, meaning it thrives under extremely hot temperatures, and the other is a thermophile, which thrives under warm temperatures. Since the 1990s, Kral has been studying methanogens and examining their ability to survive on Mars. In 2004, scientists discovered methane in the Martian atmosphere, and immediately the question of the source became an important one. According to Kral:

When they made that discovery, we were really excited because you ask the question ‘What’s the source of that methane?. One possibility would be methanogens.

Understanding the makeup of Mars atmosphere and ecology is another major step towards ensuring that life can exist there again someday. From Red Planet, to Blue Planet, to Green Planet… it all begins with a fundamental understanding of what is currently able to withstand the Martian environment. And once this foundation is secured, our ecologists and environmental engineers can begin contemplating what it will take to create a viable atmosphere and sustainable sources of water there someday.

terraformingSources: phys.org, (2)

News from SpaceX: the Dragon V2 and SuperDraco

spaceX_elonmuskSpaceX has been providing a seemingly endless stream of publicity lately. After months of rocket testing and sending payloads to the International Space Station, they are now unveiling the latest in some pretty impressive designs. This included the SuperDraco, a new attitude-control thruster; and the new Dragon V2 – a larger, more powerful, and manned version of the reusable Dragon capsule. These unveilings came within a short space of each other, largely because these two developments will be working together.

The first unveiling began back in February, when SpaceX announced the successful qualification testing of its SuperDraco rocket engine. Designed to replace the Draco engines used for attitude control on the Dragon orbital spacecraft, the SuperDraco will act as the Dragon’s launch emergency escape system, as well as giving it the ability to make a powered landings. Since that time, the company has announced that it will be added to the new Dragon capsule, which was unveiled just days ago.

superdraco-testThe SuperDraco differs from most rocket engines in that its combustion chamber is 3D printed by direct metal laser sintering (DMLS), where complex metal structures are printed by using a laser to build the object out of metal powders one thin layer at a time. The regeneratively-cooled combustion chamber is made of inconel; a family of nickel-chromium alloy that’s notable for its high strength and toughness, and is also used in the Falcon 9’s Merlin engine.

Elon Musk, SpaceX’s Chief Designer and CEO, had this say about the innovation behind the new rocket:

Through 3D printing, robust and high-performing engine parts can be created at a fraction of the cost and time of traditional manufacturing methods. SpaceX is pushing the boundaries of what additive manufacturing can do in the 21st century, ultimately making our vehicles more efficient, reliable and robust than ever before.

MarsOneOther notable features include the propellent, which is a pair of non-cryogenic liquids – monomethyl hydrazine for the fuel and nitrogen tetroxide for the oxidizer. These are hypergolic, meaning that they ignite on contact with one another, which helps the SuperDraco to restart multiple times. It’s also built to be deep throttled, and can go from ignition to full throttle in 100 ms. But what really sets the SuperDraco apart is that is has 200 times the power of the Draco engine, which works out to  7,440 kg (16,400 lbs) of thrust.

The SuperDraco’s main purpose is to provide attitude control for the Dragon capsule in orbit and during reentry, as well as acting as the craft’s launch escape system. Unlike previous US manned space capsules of the 1960s and ‘70s, the next version of the Dragon won’t use a tower equipped with rocket motors to carry the capsule away in case of a launch accident. The SuperDraco can be used at any point in the launch from pad to orbit, not just during the first minutes of launch, as the towers were.

spacex-falcon-9-rocket-largeEight engines firing for five seconds are enough to carry the capsule safely away from the booster with 120,000 lb of axial thrust. In addition, the eight engines also provide a high degree of redundancy should one or more engines fail. But what’s really ambitious about the SuperDraco is that, like the Falcon 9 booster, the Dragon is designed to ultimately return to its spaceport under its own power and land with the precision of a helicopter, and it’s the power and control of the SuperDraco that makes this possible.

SpaceX is even looking beyond that by planning to use the SuperDraco engine for its Red Dragon Mars lander; an unmanned modification of the Dragon designed for exploring the Red Planet. The SuperDraco will make its first flight on a pad abort test later this year as part of NASA’s Commercial Crew Integrated Capabilities (CCiCap) initiative. Using 3D printing to cut the cost of production is in keeping with Musk’s vision of reducing the associated costs of spaceflight and putting rockets into orbit.

spaceX_dragon_v2But equally impressive was the unveiling of the Dragon V2 manned space capsule, which took place at a brief media event at SpaceX’s Hawthorne, California headquarters at the end of May. This larger, more powerful version of the reusable Dragon capsule will one day carry astronauts to the International Space Station (ISS) and return to Earth to land under its own power. This latest development brings the company one step closer towards its ultimate goal of a fully reusable manned capsule capable of making a powered landing.

Billed as a “step-change in spacecraft technology,” the Dragon V2 that Musk unveiled is larger and more streamlined than the first Dragon, with a cabin large enough to accommodate up to seven astronauts for several days in orbit comfortably. The interior is outfitted with touchscreen control panels and a more sophisticated piloting system, so it can dock with the space station autonomously or under the control of the pilot instead of relying on one of the ISS’s robotic arms.

spaceX_dragon_v2_1For returning to Earth, the Dragon V2 has the third version of the PICA-X heatshield, which is SpaceX’s improvement on NASA’s Phenolic Impregnated Carbon Ablator (PICA) heat shield. Another nod to reusability,  this shield is about to carry out more flights before needing a refit since it ablates less than previous versions. And of course, the capsule will be outfitted with eight SuperDraco engines, which give it a combined thrust of almost 60,000 kgs (131,200 lbs).

However, Musk points out that Dragon V2 still carries a parachute, but that’s only a backup system, similar to the analog joystick and manual controls that are available in the cockpit. Like these, the parachute is only meant for use in the event of a malfunction of the SuperDraco engines, which can still make a landing if two of the eight engines fail. If the landing is successful, Musk says that all the Dragon V2 needs to fly again is refueling.

And the arrival of these new machines couldn’t have been more timely, given the termination of NASA’s cooperation with Roscosmos – Russia’s federal space agency. With reusable craft that are produced by the US and that can be launched from US soil, Russia’s aging Soyuz rockets will no longer be necessary. So much for the trampoline idea!

And of course, there are videos of the rocket test and the unveiling. Enjoy!

SuperDraco Test Firing:


SpaceX Dragon V2 Unveiling:


Sources: gizmag.com, (2), fool.com

Powered by the Sun: Solar Buildings and Wind Towers

Magnificent CME Erupts on the Sun - August 31In our ongoing drive to find ways to meet energy demands in a clean and sustainable way, solar power is the clearly the top contender. While inroads have certainly been made in terms of fusion technology, the clean, abundant, and renewable power that can be derived from our sun seems to hold the most promise. In addition to the ever-decreasing costs associated with the manufacture and installation of solar cells, new applications that are appearing all the time that allow for greater usage and efficiency.

Consider the following example that comes from Seoul, Korea, where Hanwa – the largest solar company in the world – has chosen to retrofit its aging headquarters with a solar facade that will provide both for the buildings needs and cut down on energy costs. Having been built in the 1980’s, the Hanwa building is part of a global problem. High-rise buildings suck up around 16% of the world’s energy, and most were built to specifications that do not include sustainability or self-sufficiency.

solar_skyscraper3Even though the most recently-built skyscrapers are helping change things by employing renewable energy and sustainable methods – like the Pertamina Energy Tower in Jakarta –  that still leaves tens of thousands of inefficient giant buildings on the ground. And rather than tear them down and erect new buildings in their place, which would be very wasteful and inefficient, it is possible to convert these buildings into something cleaner and less reliant on other external sources of electricity.

Basically, the plan calls for plastering the 29-story building with three-hundred new solar panels. These will be placed on the sunniest spots to harvest energy, and other strategically placed panels will automatically adjust to help keep the interior cool but bright with natural light. New high-performance windows will save more energy. In total, though the final details are still in progress, the retrofit may save well over a million kilowatt-hours of electricity each year.

solar_skyscraper2In theory, say designers from Amsterdam-based UNStudio, this type of facade could be added onto any skyscraper. As the researcher explains:

It would be the principles that could be applied of course and not the design, as every building has its own context, program, size, view corridors, orientation etc. which would affect the design parameters differently. Each building would be unique and would require a tailored approach.

Retrofitting old skyscrapers is an important way for cities to fight climate change, say engineers from ARUP, which worked with UNStudio on optimizing the design. And it’s usually a better solution than building something brand new. Accroding to Vincent Cheng, who led the project from ARUP’s Hong Kong studio, retrofitting is a better option for old skycrapers, both in “terms of reducing embodied carbon emission and waste elimination.”

solar_downdraft_towerAt the other end of things, there are the ongoing efforts to expand solar power production to the point that it will supersede coal, hydro, and nuclear in terms of electrical generation. And that’s the idea behind the Solar Downdraft Tower, a proposed installation some 686 meters (2,250 feet) in height with 120 huge turbines and enough pumping capacity to keep more than 2.5 billion gallons of water circulating. In terms of output, it would generate the equivalent of wind turbines spread over 100,000 acres, or as big as the Hoover Dam.

The process is quite simple: water is sprayed at the top, causing hot air to become heavy and fall through the tower. By the time it reaches the bottom, it’s reaching speeds of up to 80 km (50 miles) per hour, which is ideal for running the turbines. The immediate advantage over standard solar and wind energy is the plant runs continuously, day and night. This addresses the issue of intermittency, which remains a problem with solar and wind generation.

solar_downdraft_tower2Basically, solar and wind farms cannot provide if the weather is not cooperating, or if the solar cells become covered in dust or sand. But as long as the local environment remains warm enough – a near certainty in the deserts of Arizona – the tower will continue to produce power. Best of all, the plant itself runs under its own generated energy – with approx. 11% of the output being used to power the pumps – and aboutt three-quarters of the water is collected at the bottom.

According to Ron Pickett, CEO of Solar Wind Energy Tower (the Maryland company behind the design):

This is totally clean energy that actually makes money. It makes energy at a cost comparable to if you were using natural gas to power a plant.

The simplicity of the technology is also a major selling point. For more than a century, people have been working on variants of solar wind towers. In the 1980s, engineers in Spain built a 195 meter (640-foot) test tower that pushed air upwards through turbines and generated power for seven years until it fell over in a storm. The tougher issue is the enormous expense, which is an inevitable result of building something so big. According to Picket, the Arizona project is likely to cost as much as $1.5 billion to build.

solar_downdraft_tower1However, Solar Wind Energy recently jumped two hurdles to getting the tower realized. First, it won a development rights agreement from San Luis, a city on the Mexico border, that included a deal with the local utility to purchase power, and the rights to the 2.5 billion gallons of water necessary to the project. It also reached an agreeing with National Standard Finance, an infrastructure fund, for preliminary funding that will begin to pay for generating equipment and related costs.

Solar Wind Energy also has plans to see similar towers build in Chile, India, and the Middle East, places that are also well suited to turn warm air temperatures into electrical power. And they are hardly alone in looking for ways to turn solar power into abundant electricity in ways that are technically very simple. As the 2010s roll on, we can expect to see more and more examples of this as renewables make their way into the mainstream.

In the meantime, check out this video from Solar Wind Energy that details how their Tower concept works:


Sources:
fastcoexist.com, (2)

New Technique Reveals Angkor Wat’s Hidden Art

Angkor_WatEvery year, millions of visitors flock to Angkor Wat – an ancient temple in modern-day Cambodia and the heart of the one-time capitol of the Khmer Empire. There, they marvel at the 900-year-old towers, a giant moat and the shallow relief sculptures of Hindu gods, and the intricate architecture and carvings. However, until very recently, they were unaware of the paintings on the temple walls, representations of daily life that were hiding in plain sight.

Built between A.D. 1113 and 1150, Angkor Wat stood at the center of Angkor, the capital of the Khmer Empire. The 500-acre (200 hectares) complex, one of the largest religious monuments ever erected, originally served as a Hindu temple dedicated to the god Vishnu, but was transformed into a Buddhist temple in the 14th century. Since that time, the temple has become a symbol of national pride for Cambodia and the source of much archaeological and historical research and speculation.

Angkor-Wat-1Thanks to digitally enhanced images, some tw0-hundred detailed murals have bee revealed that depict elephants, deities, boats, orchestral ensembles and people riding horses — all of which were invisible to the naked eye. According to the researchers who uncovered it, many of the faded markings could be graffiti left behind by pilgrims after Angkor Wat was abandoned in the 15th century. However, the more elaborate paintings may be relics of the earliest attempts to restore the temple.

The paintings were first noticed by  Noel Hidalgo Tan, a rock-art researcher of the Australian National University in Canberra, while he was working on an excavation at Angkor Wat in 2010. After first spotting the red and black pigment on the walls of the monument, he decided to investigate further. After scientists took pictures using an intense flash, they then used a tool from NASA to digitally enhance the colors of the images.

NW Corner Facing STo make these paintings visible, Tan and his associates used a technique called Decorrelation Stretch Analysis, which exaggerates subtle color differences. This method has become a valuable tool in rock-art research, as it can help distinguish faint images from the underlying rock. It has even been used to enhance images taken of the Martian surface by NASA’s Opportunity rover when conducting surface studies and geological analysis.

According to Antiquity, a quarterly archeology review, what they found was 200 depictions of ancient life. These included paintings of elephants, lions, the Hindu monkey god Hanuman, boats and buildings — perhaps even images of Angkor Wat itself. Tan went back to the site to conduct a more methodical survey in 2012 with his Cambodian colleagues from APSARA (Authority for the Protection and Management of Angkor and the Region of Siem Reap).

Some of the most detailed paintings, the ones located at the top of the temple, are passed by literally thousands of visitors every day, but the most elaborate scenes are effectively invisible to the naked eye.

SW Corner facing EOne chamber in the highest tier of Angkor Wat’s central tower, known as the Bakan, contains an elaborate scene of a traditional Khmer musical ensemble known as the pinpeat, which is made up of different gongs, xylophones, wind instruments and other percussion instruments. In the same chamber, there’s an intricate scene featuring people riding horses between two structures, which might be temples. As Tan explained:

A lot of the visible paintings on the walls have been previously discounted as graffiti, and I certainly agree with this interpretation, but there are another set of paintings discovered from this study that are so schematic and elaborate that they are likely not random graffiti, but an attempt to decorate the walls of the temple.

Christophe Pottier, an archaeologist and co-director of the Greater Angkor Project who was not involved in the new study, agreed that these more complex murals show deliberate intention and can’t be interpreted as mere graffiti. Pottier, however, added that the discovery of hidden paintings isn’t all that surprising. Though they haven’t been studied systematically before now, several traces of paintings have been found at the temple during the last 15 years.

Facing SAnd though researchers can’t be sure exactly when the paintings were created, Tan speculates that the most elaborate artworks may have been commissioned by Cambodia’s King Ang Chan, who made an effort to restore the temple during his reign between 1528 and 1566. During this time, unfinished carvings were completed and Angkor Wat began its transformation into a Buddhist pilgrimage site, which are confirmed by some of the newly revealed paintings that show Buddhist iconography.

Ultimately, getting an accurate look at ancient heritage sites and representations is only one of the benefits of this new process. In addition, there is the potential for heritage conservation. With countless sites around the world being threatened by war, environmental issues, and neglect, getting a digital record of pictures like these will ensure that the works of ancient peoples to chronicle their lives and express themselves artistically will be preserved, long after the physical objects are gone.

Sources: scientificamerican.com, time.com

Frontiers of Neuroscience: Neurohacking and Neuromorphics

neural-network-consciousness-downloading-640x353It is one of the hallmarks of our rapidly accelerating times: looking at the state of technology, how it is increasingly being merged with our biology, and contemplating the ultimate leap of merging mind and machinery. The concept has been popular for many decades now, and with experimental procedures showing promise, neuroscience being used to inspire the next great leap in computing, and the advance of biomedicine and bionics, it seems like just a matter of time before people can “hack” their neurology too.

Take Kevin Tracey, a researcher working for the Feinstein Institute for Medical Research in Manhasset, N.Y., as an example. Back in 1998, he began conducting experiments to show that an interface existed between the immune and nervous system. Building on ten years worth of research, he was able to show how inflammation – which is associated with rheumatoid arthritis and Crohn’s disease – can be fought by administering electrical stimulu, in the right doses, to the vagus nerve cluster.

Brain-ScanIn so doing, he demonstrated that the nervous system was like a computer terminal through which you could deliver commands to stop a problem, like acute inflammation, before it starts, or repair a body after it gets sick.  His work also seemed to indicate that electricity delivered to the vagus nerve in just the right intensity and at precise intervals could reproduce a drug’s therapeutic reaction, but with greater effectiveness, minimal health risks, and at a fraction of the cost of “biologic” pharmaceuticals.

Paul Frenette, a stem-cell researcher at the Albert Einstein College of Medicine in the Bronx, is another example. After discovering the link between the nervous system and prostate tumors, he and his colleagues created SetPoint –  a startup dedicated to finding ways to manipulate neural input to delay the growth of tumors. These and other efforts are part of the growing field of bioelectronics, where researchers are creating implants that can communicate directly with the nervous system in order to try to fight everything from cancer to the common cold.

human-hippocampus-640x353Impressive as this may seem, bioelectronics are just part of the growing discussion about neurohacking. In addition to the leaps and bounds being made in the field of brain-to-computer interfacing (and brain-to-brain interfacing), that would allow people to control machinery and share thoughts across vast distances, there is also a field of neurosurgery that is seeking to use the miracle material of graphene to solve some of the most challenging issues in their field.

Given graphene’s rather amazing properties, this should not come as much of a surprise. In addition to being incredibly thin, lightweight, and light-sensitive (it’s able to absorb light in both the UV and IR range) graphene also a very high surface area (2630 square meters per gram) which leads to remarkable conductivity. It also has the ability to bind or bioconjugate with various modifier molecules, and hence transform its behavior. 

brainscan_MRIAlready, it is being considered as a possible alternative to copper wires to break the energy efficiency barrier in computing, and even useful in quantum computing. But in the field of neurosurgery, where researchers are looking to develop materials that can bridge and even stimulate nerves. And in a story featured in latest issue of Neurosurgery, the authors suggest thatgraphene may be ideal as an electroactive scaffold when configured as a three-dimensional porous structure.

That might be a preferable solution when compared with other currently vogue ideas like using liquid metal alloys as bridges. Thanks to Samsung’s recent research into using graphene in their portable devices, it has also been shown to make an ideal E-field stimulator. And recent experiments on mice in Korea showed that a flexible, transparent, graphene skin could be used as a electrical field stimulator to treat cerebral hypoperfusion by stimulating blood flow through the brain.

Neuromorphic-chip-640x353And what look at the frontiers of neuroscience would be complete without mentioning neuromorphic engineering? Whereas neurohacking and neurosurgery are looking for ways to merge technology with the human brain to combat disease and improve its health, NE is looking to the human brain to create computational technology with improved functionality. The result thus far has been a wide range of neuromorphic chips and components, such as memristors and neuristors.

However, as a whole, the field has yet to define for itself a clear path forward. That may be about to change thanks to Jennifer Hasler and a team of researchers at Georgia Tech, who recently published a roadmap to the future of neuromorphic engineering with the end goal of creating the human-brain equivalent of processing. This consisted of Hasler sorting through the many different approaches for the ultimate embodiment of neurons in silico and come up with the technology that she thinks is the way forward.

neuromorphic-chip-fpaaHer answer is not digital simulation, but rather the lesser known technology of FPAAs (Field-Programmable Analog Arrays). FPAAs are similar to digital FPGAs (Field-Programmable Gate Arrays), but also include reconfigurable analog elements. They have been around on the sidelines for a few years, but they have been used primarily as so-called “analog glue logic” in system integration. In short, they would handle a variety of analog functions that don’t fit on a traditional integrated circuit.

Hasler outlines an approach where desktop neuromorphic systems will use System on a Chip (SoC) approaches to emulate billions of low-power neuron-like elements that compute using learning synapses. Each synapse has an adjustable strength associated with it and is modeled using just a single transistor. Her own design for an FPAA board houses hundreds of thousands of programmable parameters which enable systems-level computing on a scale that dwarfs other FPAA designs.

neuromorphic_revolutionAt the moment, she predicts that human brain-equivalent systems will require a reduction in power usage to the point where they are consuming just one-eights of what digital supercomputers that are currently used to simulate neuromorphic systems require. Her own design can account for a four-fold reduction in power usage, but the rest is going to have to come from somewhere else – possibly through the use of better materials (i.e. graphene or one of its derivatives).

Hasler also forecasts that using soon to be available 10nm processes, a desktop system with human-like processing power that consumes just 50 watts of electricity may eventually be a reality. These will likely take the form of chips with millions of neuron-like skeletons connected by billion of synapses firing to push each other over the edge, and who’s to say what they will be capable of accomplishing or what other breakthroughs they will make possible?

posthuman-evolutionIn the end, neuromorphic chips and technology are merely one half of the equation. In the grand scheme of things, the aim of all of this research is not only produce technology that can ensure better biology, but technology inspired by biology to create better machinery. The end result of this, according to some, is a world in which biology and technology increasingly resemble each other, to the point that they is barely a distinction to be made and they can be merged.

Charles Darwin would roll over in his grave!

Sources: nytimes.com, extremetech.com, (2), journal.frontiersin.orgpubs.acs.org

Powered by the Sun: Solar-Powered Roads

solar_roadsCurrently, there are nearly 30,000 square kilometers (18,000 square miles) of roads in the United States. And by some estimates, there are also as many as 2 billion parking spaces. That works out to some 50,000 square kilometers (31,000 square miles) of usable surface that is just soaking up sun all day long. So why not put it to use generating solar power? That’s the question a entrepreneurial couple named Scott and Julie Brusaw asked themselves, and then proceeded to launch a solar startup named Solar Roadways to see it through.

Their concept for a solar road surface has the potential to produce more renewable energy than the entire country uses. In fact, they’ve actually already developed a working prototype that’s been installed in a parking lot, and they’re now crowdsourcing funds in order to tweak the design and move towards production. Once completed, they hope to re-pave the country with custom, glass-covered solar panels that are strong enough to drive on while generating enough power to perform a range of functions.

solar_roads1These include providing lighting through a series of LEDs that make road lines and signs that help reduce nighttime accidents. Embedded heating elements also melt ice and snow and are ideal for winter conditions. The surface could also be used to charge electric vehicles as oppose to fossil fuels, and future technology could even allow for charging whilst driving via mutual induction panels. Amazingly, the team also found that car headlights can produce energy in the panels, so cars driving around at night would be producing some electricity.

Since 2006, Solar Roadways has designed and developed hexagonal glass solar panels studded with LED lights that could be installed on a variety of surfaces such as roads, pavements and playgrounds. These panels would more than pay for themselves and would benefit both businesses and homeowners as the energy generated from driveways and parking lots could be used to power buildings, and any excess can be sold back to the grid.

solar_roads3A glass surface may sound fragile, but the prototypes have been extensively tested and were found to be able to easily withstand cars, fully loaded trucks, and even 250,000-pound oil drilling equipment. The textured surface means it isn’t slippery, and since it can self-power small heaters inside to melt ice in winter, it’s supposedly safer than an ordinary road. As Scott Brusaw put it:

You first mention glass, people think of your kitchen window. But think of bulletproof glass or bomb resistant glass. You can make it any way you want. Basically bulletproof glass is several sheets of tempered glass laminated together. That’s what we have, only our glass is a half inch thick, and tempered, and laminated.

Recycled materials can also be used to produce the panels; the prototypes were constructed using 10% recycled glass. All of the panels will be wired up, so faults can be easily detected and repaired. They team have also designed a place to stash power cables, called “Cable Corridors”, which would allow easy access by utility workers. Furthermore, they also believe that these corridors could be used to house fiber optic cables for high-speed internet.

solar_roads2Obviously, this project isn’t going to be cheap, but Solar Roadways has already surpassed their goal of raising $1 million on their indiegogo page (they have managed to raise a total of $1,265,994 as of this articles publication). With this money, they will now be able to hire engineers, make final modifications, and move from prototype to production. They hope to begin installing projects at the end of the year, but a significantly larger amount of money would be required if they were to try to cover all the roads in the US!

However, given the increasing demand for solar technology and the numerous ways it can help to reduce our impact on the environment, it would not be surprising to see companies similar to Solar Roadways emerge in the next few years. It would also not be surprising to see a great deal of towns, municipalities and entire countries to start investing in the technology in the near future to meet their existing and projected power needs. After all, what is better than cheap, abundant, and renewable energy that pretty much provides itself?

For more info, check out Solar Roadways website and their Indiegogo campaign page. Though they have already surpassed their goal of $1 startup dollars, there is still five days to donate, if you feel inclined. And be sure check out their promotional video below:

Sources: iflscience.com, fastcoexist.com, solarroadways.com, indiegogo.com

Climate Crisis: (More) Smog-Eating Buildings

pollution_eating2Air pollution is now one of the greatest health concerns in the world, exceeding cigarettes as the number one killer of people worldwide. With an estimated 7 million deaths in 2012 alone, the WHO now ranks it as the biggest global environmental killer. In fact, of the 1,600 major cities surveyed from around the world, over half are now above the safe limits of Particulate Matter (PM), with the highest cost borne by the poorer regions of South-East Asia and the Western Pacific.

Because of this, Carbon Capture technology is being seriously considered as an integral part of the future of urban planning and architecture. So in addition to addressing the issues if housing needs, urban sprawl and energy usage, major buildings in the future may also come equipped with air-cleaning features. Already, several major cities are taking advantage, and some innovative and futuristic designs have emerged as a result. Consider the following examples:

aircleaning_skyscraperCO2ngress Gateway Towers: Conceived by architects Danny Mui and Benjamin Sahagun while studying at the Illinois Institute of Technology, this concept for an air-cleaning skyscraper earned them an honorable mention in the 2012 CTBUH student competition. And while there are no currents plans to build it, it remains a fitting example of innovative architecture and merging carbon capture technology with urban planning and design.

The concept involves two crooked buildings that are outfitted with a filtration system that feeds captured CO2 to algae grown in the building’s interior, which then converts it into biofuels. Aside from the scrubbers, the buildings boast some other impressive features to cut down on urban annoyances. These include the “double skin facade”- two layers of windows – that can cut down on outside traffic noise. In addition, the spaces on either side of the buildings’ central elevator core can be used as outdoor terraces for residents.

CC_catalytic_clothingCatalytic Clothing: A collaborative effort between Helen Storey and Tony Ryan, the goal of this experiment is to incorporate the same pollution-eating titanium dioxide nanoparticles used in carbon capture façade into laundry detergent to coat clothing. According to Ryan, one person wearing the nanoparticle-washed clothes could remove 5 to 6 grams of nitrogen dioxide from the air a day; two pairs of jeans could clean up the nitrogen dioxide from one car.

If enough people in downtown New York, Beijing, Mumbai, Mexico City – or any other major city of the world renowned for urban density, high concentrations of fossil-fuel burning cars, and air pollution – would wear clothing coating with these nanoparticles, air pollution could be severely reduced in a few years time. And all at a cost of a few added cents a wash cycle!

CC_in_praise_of_airIn Praise of Air: Located in Sheffield, England, this 10×20 meter poster shows Simon Armitage’s poem “In Praise of Air”. Appropriately, the poster doubles as a pollution-eating façade that uses titanium dioxide nanoparticles. The full poem reads as follow:

I write in praise of air.  I was six or five
when a conjurer opened my knotted fist
and I held in my palm the whole of the sky.
I’ve carried it with me ever since.

Let air be a major god, its being
and touch, its breast-milk always tilted
to the lips.  Both dragonfly and Boeing
dangle in its see-through nothingness…

Among the jumbled bric-a-brac I keep
a padlocked treasure-chest of empty space,
and on days when thoughts are fuddled with smog
or civilization crosses the street

with a white handkerchief over its mouth
and cars blow kisses to our lips from theirs
I turn the key, throw back the lid, breathe deep.
My first word, everyone’s  first word, was air.

According to Tony Ryan of University of Sheffield, who created it with his colleagues, the poster can absorb about 20 cars’ worth of nitrogen oxide a day and would add less than $200 to the cost of a giant advertisement. While it is a creative tool for promoting a local poetry festival, it also serves as proof of concept that the technology can be incorporated into practically any textile, and will be reproduced on several more banners and posters in the coming months.

hyper_filter1Hyper Filter Skyscraper: Designed by Umarov Alexey of Russia, the Hyper Filter Skyscraper recognizes the threat of environmental pollution and seeks to merge carbon capture technology with the building’s design. Under today’s levels of pollution, harmful substances spread over hundreds of kilometers and a whole region and even a country could represent a single pollution source. Hence the plan to place a air-scrubbing building at the heart of the problem – an urban core.

Consistent with CC technology and the principle of photosynthesis, the Hyper Filter Skyscraper is designed to inhale carbon dioxide and other harmful gases and exhale concentrated oxygen. The skin of the project is made out of long pipe filters that ensure the cleaning process. While clean air is released to the atmosphere, all the harmful substances are stored for use in the chemical industry for later use. These can include chemicals products, biofuels, and even manufactured goods.

CC_mexico-hospital-facade-horizontal-galleryManuel Gea González Hospital: Located in Mexico City, this hospital was unveiled last year. The building features a “smog-eating” façade that covers 2,500 square meters and has titanium dioxide coating that reacts with ambient ultraviolet light to neutralize elements of air pollution, breaking them down to less noxious compounds like water. This was Berlin-based Elegant Embellishment’s first full-scale installation, and its designers claim the façade negates the effects of 1,000 vehicles each day.

Funded by Mexico’s Ministry of Health, the project is part of a three-year, $20 billion investment into the country’s health infrastructure, an effort which earned Mexico the Air Quality Prize at the 2013 City Climate Leadership Awards in London. Considering the fact that Mexico City is <i>the</i> most densely-populated cities in the world – with a population of 21 million people and a concentration of 6,000/km2 (15,000/sq mi) – this should come as no surprise.

CC-pollution-palazzo-italia-horizontal-galleryPalazzo Italia: Located in Milan, this building is designed by the architectural firm Nemesi & Partners, and comes equipped with a jungle-inspired façade that is built from air-purifying, “biodynamic” cement. This shell will cover 13,000 square meters across six floors, and will remove pollutants from the air and turns them into inert salts. Apparently, the material from Italcementi only adds 4-5 percent to the construction costs.

Scientists in the Netherlands have also adapted the photocatalytic material to roads, claiming it can reduce nitrous oxide concentrations by 45 percent. The building is set to launch next year at the 2015 Milan Expo.

Propogate Skyscraper: This pollution skyscraper was designed by Canadian architects YuHao Liu and Rui Wu, and won third place at this year’s eVolo’s Skyscraper Competition. Basically, it envisions a building that would turn air pollution into construction materials and use it to gradually create the building. Relying on an alternative carbon-capture technique that employs philic resins and material processes to transform carbon dioxide into solid construction material, their uses carbon dioxide as a means to self-propagate.

3028400-slide-propagateA simple vertical grid scaffold forms the framework and takes all the ingredients it needs for material propagation from the surrounding environment. Individual living spaces are built within this gridwork, which creates open square spaces between lattices that can then be filled by tenements. Its pattern of growth is defined by environmental factors such as wind, weather, and the saturation of carbon dioxide within the immediate atmosphere.

Thus each building is a direct reflection of its environment, growing and adapting according to local conditions and cleaning as the air as it does so. Unlike conventional skyscrapers, which rely on steel frame and concrete casting, the proposed skyscraper suggests a more environmental conscious construction method, an alternative mode of occupation and ownership, and possibly a distinct organization of social relationships.

Synthesized Spider Web: Another innovative solution comes from Oxford’s Fritz Vollrath, who was inspired by the behavior of spider silk fibers. With the addition of a glue-like coating, the thinness and electrical charge of spider silk allows them to capture any airborne particles that pass through them. These synthesized silk webs could be used like a mesh to capture pollutants – including airborne particulates, chemicals, pesticides, or heavy metals – coming out of chimneys or even disaster zones.

Spiderweb_towersSpiderweb Tower: Considering that London has some of the worst air quality in Europe, and the fact that air pollution is thought to be the second biggest risk to public health in the UK after smoking, solutions that can bring carbon capture and pollution-eating technology to downtown areas are in serious demand. And one solution comes from graduate architect Chang-Yeob Lee, who has come up with a radical design that would turn London’s BT Tower into a pollution harvesting ‘spiderweb’ that turned smog into bio-fuel.

Lee’s plan envisions the skyscraper being covered in a ‘giant eco-catalytic converter’ that traps pollutants from the capital’s air. At the same time, nano-tubes of titanium would turn carbon-dioxide into methanol and water using only the power of the sun. As Lee put it:

The project is about a new infrastructure gathering resources from pollutants in the city atmosphere, which could be another valuable commodity in the age of depleting resources.

Quite a bit of potential, and just in the nick of time too! And be sure to watch this video


Sources: iflscience.com, wired.co.uk, cnn.com, evolo.com, latintimes.com, catalyticpoetry.org

The Future, Coming Soon!: Aeroflex Hoverbike by 2017

aerofex-hover-bike-prototypeThe Aerofex’s hoverbike made a pretty big splash when the Californian company showed off its working prototype back in 2012. But since that time, tech enthusiasts and futurists (not to mention fans of Stars Wars and sci-fi in general) heard nary a peep from the company for almost two years. Luckily, Aerofex has finally broken its silence and announced a launch date and a price for its hovering vehicle. According to its website, it will be ready to ship by 2017, and cost a robust $85,000 a vehicle.

In its current form, the Aero-X is capable of carrying a load of up to 140kg (310 pounds), has seating for two, and can run for 1 hour 15 minutes on a full tank of petrol. Its two wheels are ducted rotors with carbon fibre blades, which operate in a similar manner to the open rotor of a helicopter with tighter control. And in addition to land, it can also fly over water. So while it is not a practical replacement for everyday vehicles, it can certainly occupy the same area profile as a small car.

aeroflex_topAnd – do I even need to say it? – it’s a freaking hoverbike! In the last two years, the company has been working on improving the vehicle’s stability and coupling – a phenomenon whereby rotor vehicles may pitch in the direction of the rotors’ spin. It has filed several patents for its solutions and looked towards quadcopters to solve the problem of wind, using gyroscopes and accelerometers communicating with an on-board computer to compensate for windy conditions.

User-friendliness has also figured very heavily into the design, with handlebar controls for intuitive steering and safety features that keep the driver from flying too high or too fast. Both of these features would drain its fuel more quickly, but they ensure a greater degree of user-safety. This also helps it comply with the US Federal Aviation Administration’s guidelines, which require a pilot’s license for anyone operating a vehicle above an altitude of 3.7 metres (12.1 feet).

aeroflex_sideSo if you have that $85,000 kicking around (and a pilots license), you can reserve yours now for a refundable deposit of $5,000. A product statement and some basic specs have also been made available on the website. According to the commercial description:

Where you’re going, there are no roads. That’s why you need the Aero-X, a vehicle that makes low-altitude flight realistic and affordable. Flying up to 3 metres (10 feet) off the ground at 45mph (72kph), the Aero-X is unlike any vehicle you’ve seen. It’s a hovercraft that rides like a motorcycle — an off road vehicle that gets you off the ground.

I can certainly see the potential for this technology, and I imagine DARPA or some other military contractor is going to be knocking on Aeroflex’s door real soon, looking for a militarized version that they can send into dirty and dangerous areas, either to pick up wounded, transport gear, or diffuse landmines. We’re talking hoverbikes, people. Only a matter of time before the armed forces decide they want these latest toys!

Click here to go to the company website and get the full run down on the bike. And be sure to check out these videos from the company website, where we see the Aeroflex going through field tests:

 


Sources: cnet.com, cbc.ca, aerofex.com