News From Space: Walk on Mars with VR

oculus-rift-omni-treadmill-mars-nasa-640x353Virtual Reality, which was once the stuff of a cyberpunk wet dream, has grown somewhat stagnant in recent years. Large, bulky headsets, heavy cables, and graphics which were low definition and two-dimensional just didn’t seem to capture the essence of the concept. However, thanks to the Oculus Rift, the technology known as Virtual Reality has been getting a new lease on life.

Though it is still in the development phase, the makers of the Oculus Rift has mounted some impressive demos. Though still somewhat limited – using it with a mouse is counter-intuitive, and using it with a keyboard prevents using your body to scan virtual environments –  the potential is certainly there and the only question at this point is how to expand on it and give users the ability to do more.

Oculus-RiftOne group that is determined to explore its uses is NASA, who used it in combination  with an Omni treadmill to simulate walking on Mars. Already, the combination of these two technologies has allowed gamers to do some pretty impressive things, like pretend they are in an immersive environment, move, and interact with it (mainly shooting and blowing things up), which is what VR is meant to allow.

NASA’s Jet Propulsion Laboratory, however, went a step beyond this by combining the Omni and a stereoscopic 360-degree panorama of Mars to create a walking-on-Mars simulator. The NASA JPL team was able to give depth to the image so users could walk around an image of the Martian landscape. This is perhaps the closest normal folks will ever get to walking around on a “real” alien planet.

omni_treadmillAlong with the Martian terrain, JPL created a demo wherein the user could wander around the International Space Station. The JPL team also found that for all the sophisticated imagery beamed back to Earth, it is no substitute for being immersed in an environment. Using a rig similar to the Rift and Omni could help researchers better orient themselves with alien terrain, thus being able to better plan missions and experiments.

Looking to the long run, this kind of technology could be a means for creating “telexploration” (or Immersive Space Exploration) – a process where astronauts would be able to explore alien environments by connecting to rover’s or satellites camera feed and controlling their movements. In a way that is similar to teleconferencing, people would be able to conduct true research on an alien environment while feeling like they were actually in there.

mars-180-degrees-panorama_croppedAlready, scientists at the Mars Science Laboratory have been doing just that with Curiosity and Opportunity, but the potential to bring this immersive experience to others is something many NASA and other space scientists want to see in the near future. What’s more, it is a cheap alternative to actually sending manned mission to other planets and star systems.

By simply beaming images back and allowing users to remotely control the robotic platform that is sending them, the best of both worlds can be had at a fraction of the cost. Whats more, it will allow people other than astronauts to witness and feel involved in the process of exploration, something that social media and live broadcasts from space is already allowing.

As usual, it seems that the age of open and democratic space travel is on its way, my friends. And as usual, there’s a video clip of the Oculus Rift and the Omni treadmill bringing a walk on Mars to life. Check it out:


Sources:
extremetech.com, engadget.com

Judgement Day Update: Headless Ape Bot

robosimianIt goes by the name of Robosimian, an ape-like robot that was built by NASA’s Jet Propulsion Laboratory. Designed and built by JPL and Stanford engineers, RoboSimian was a recent competitor in the DARPA Robotics Challenge, a competition where participants attempt to create strong, dextrous, and flexible robots that could aid in disasters as well as search and rescue missions.

Admittedly, the robot looks kind of creepy, due in no small part to the fact that it doesn’t have a head. But keep in mind, this machine is designed to save your life. As part of the DARPA challenge, they are intended to go places that would be too dangerous for humans. So I imagine whatever issues a person may have with its aesthetics would disappear when they spotted one crawling to their rescue.

robosimian1To win the challenge, the semi-autonomous robots will have to complete difficult tasks that demonstrate its dexterity and ambulatory ability. These include removing debris from a doorway, using a tool to break through a concrete panel, connecting a fire hose to a pipe and turning it on, and driving a vehicle at a disaster site. The competition, which began in 2012, will have its first trials in December.

Many of the teams in the challenge are creating fairly humanoid robots but RoboSimian, as its name implies, looks a bit more like an ape. And there is a reason for this: relying on four very flexible limbs, each of which has a three-fingered hand, the robot is much better suited to climbing and hanging, much like our Simian cousins. This makes it well-suited for the DARPA-set requirement of climbing a ladder, and will no doubt come in handy when the robot has to navigate difficult environments.

Robosimian2The demo video, featured below, shows the robots hands doing dextrous tasks as well as doing some pull ups. There’s also a computer renderings of what the final machine may look like. Check it out:


Source: wired.com

The Future is Here: Nanofibre Heart Patches

heart_patchesFor years, medical researchers have been trying to find a solution to the problem of post-cardiac event health. You see, when a heart attack occurs, the damaged tissue doesn’t grow back, but instead forms non-beating scar tissue. This in turn permanently weakens the heart, making another cardiac event that much more probable.

However, researchers at Tel Aviv University are getting promising results from a possible solution using patches that contain cardiac cells and gold nanofibers. As with other experimental heart patches, the idea behind these ones is that they could be surgically placed on damaged areas of the heart, where they would cause normal, beating heart tissue to grow back.

gold_nanoparticlesTo create them, a team led by Dr. Tal Dvir started by integrating nanofibers made of gold nanoparticles into a three-dimensional scaffolding made of biomaterials. That scaffolding was then “seeded” with heart muscle cells. The high conductivity of the gold allowed those cells to communicate with one another by sending electrical signals through the network of nanofibers.

When viewed with an electron microscope, the cells were observed to be contracting in unison, which is essential to the proper beating of the heart. By contrast, cells that were placed on scaffolding without the embedded gold nanofibers displayed much weaker contractions. In other experiments, gold nanofibers have proven useful to enhancing heart heath. But in this case, may prove useful to replacing damaged heart tissue.

heart_healthNaturally, more work is needed before this new heart patch can be made available to patients. This includes human trials, which Dr. Dvir and his colleagues are hoping to conduct soon. Similar research is also being conducted at MIT, where scientists have created electrically conductive tissue scaffolds that include cardiac cells and gold nanowires.

This research is not only a boon for cardiac health, but is also a major step forward in terms of cybernetics, biomimetics, and nanotechnology. By merging the organic and synthetic at the nano level, and in a way that merges with our bodies natural architecture, a new breed of medical solutions are being made available that could make “permanent conditions” a thing of the past.

Source: gizmag.com, aftau.org

News From Space: 12 Asteroids to Mine

asteroidsLast year, the private space exploration company Planetary Resources announced that they intended to being prospecting and mining asteroids in the near future. And while they are certainly not alone in their intention to make this happen (Deep Space Industries has the same intention), many have asked if humanity is ready to begin extracting resources from the Asteroid Belt, at least as far as our level of technology is concerned.

In response, a group of astronomers at the University of Strathclyde in the UK did their own study and concluded that it is indeed possible with current rocket technology. What’s more, they conducted a survey of the Asteroid Belt and identified 12 near-Earth asteroids that could be easily retrieved and mined, and which are believed to contain high concentrations of precious and industrial metals.

asteroid_mining_robotAlready, it has been estimated that an asteroid as small as one-kilometer in diameter could contain upwards of two billion tons of iron-nickel ore, which is three times the global yield on Earth. Then there is the likely presence of gold, platinum, and other rare substances. Planetary Resources claims a 30-meter object of the right composition could contain $25 to $50 billion in platinum.

These numbers spurred the University of Strathclyde team, led by Garcia Yarnoz, to pour over the astronomical data on near-Earth objects to see if any of them could actually be snared. To their surprise, they found 12 small asteroids that pass close enough to Earth that they could be corralled into the L1 or L2 Lagrangian points for mining operations. The researchers dubbed these asteroids Easily Retrievable Objects (EROs).

NASA_moonLagrange points refer to points where the gravity of Earth an another celestial object balance out. If anything enters one of these areas, it stays put, which is precisely what you want to do if you are looking to study it, mine it, or just keep it where its accessible. The L1 and L2 Lagrangian points are where the gravity of Earth and the sun are at a draw, roughly 1.6 million km (1 million miles) from Earth and about four times the distance to the moon.

The 12 candidate asteroids all have orbits that take them near the L1 or L2 Lagrangian points, so they would need only a small push to get them to the right spot. Yarnoz and his team estimate that changing the velocity of these objects by less than 500 meters per second would be sufficient, and this could be completed as early as 2026.

asteroid_DA14One of the important criteria in selected 12 mineable asteroids from the database of 9,000 near-Earth objects was size. Nudging a larger asteroid safely to a Lagrange point is simply not feasible with the current state of technology. In fact, most of the EROs that were identified in the study range between two to 20 meters, but that’s still large enough to contain substantial resources.

These 12 objects are probably a small fraction of EROs floating around near Earth. We know where many more of the big space rocks are because they’re much easier to see, but there might be a wealth of resource-rich small asteroids near the Lagrangian points ripe for the picking. And with time, and more orbital telescopes to spot them with, we can expect the list of mineable asteroids to grow.

Source: extremetech.com

Detroit’s New Robocop Statue

robocop-statue-2Some of you may recall how a few years back, a group of Detroit citizens began talking about erecting a statue of Robocop in their fair city. At the time, Detroit’s Mayor David Bing shot the idea down, eventually referring to it as “silly”. This led to a campaign that was dedicated to making the statue happen, and after three years, it looks like they are finally going to get their wish.

In addition to a promotional video starring Peter Weller (Robocop himself), a Kickstarter campaign was mounted to fund the statue’s creation. The campaign was launched back in 2011 by the group known as Imagination Station, a Detroit nonprofit specializing in art and renovation. Within 45 days, they had raised over $67,000, thanks to public donations but also from an unexpected source.

ROBOCOP-Concept-Art-Image-02 As the story goes, Brandon Walley – director of development at the Imagination Station – received a call from Pete Hottelet, the founder of Omni Consumer Products (OCP). As anyone who’s seen Robocop knows, this is the name of the evil megacorporation at the center of the RoboCop universe. But in this case, OCP specializes in selling real-world versions of products seen in popular movies and TV shows.

Apparently, Hottelet had contacted Mayor Bing’s office and was told outright that the city was not involved in any such project. He then called Walley, got the low-down on their intentions to go ahead with creating one anyway, and agreed to match the money they raised. After six days and $25,000 raised, Hottelet cut them a cheque for the same amount. Thirty nine-days later, they had the remaining ten grand they needed, and then some.

robocop_concept_art_walkerAnd as I recently learned, back in May production began on the statue right here in British Columbia by Across the Board Creations, a studio that specialized in 3D models, props, and artistic recreations. This past Wednesday, the finished product arrived in a crate at the Imagination Station, and photos have began to circulate of the finished product.

The Imagination Station in Detroit has offered a place on its property at Roosevelt Park to install the 10-foot-tall statue, which has now been cast and is headed to Venus Bronze Works in Detroit to be bronzed. And as you can see from the photo (see below), it is rather large, detailed, and pretty badass! Plans have already been made to erect the statue in 2014, just in time for the Robocop movie relaunch.

Robocop_concept_art_UAVYou may also notice I’ve peppered concept art for the movie throughout. These include Robocop’s new sidearm, OCP’s ED-209 Assault Walker, and the XT-908 Area Drone. Clearly, they are looking to merge elements of the original with a more model feel, going beyond mere cyborgs, walkers and corporate greed to include unmanned aerial surveillance and the motif of a police state.

Pretty badass, huh?
Pretty badass, huh?

And be sure to check out Peter Weller’s hilarious promotional video for the statue, plus the trailer for the Robocop relaunch. Enjoy!


Sources: blastr.com, motherjones.com, kickstarter.com, acrosstheboardcreations.com

Towards a Cleaner Future: The Cactus-Inspired Oil Skin

???Oil spills are a very difficult problem. In addition to being catastrophic to the local environment, they are also incredibly difficult to clean up. After a spill occurs, some always stays on the surface while the rest forms heavy droplets and sink downwards, either becoming suspended in the water or falling to the bottom. Getting at these bits of the slick is difficult, and current methods are neither cost effective nor environmentally friendly themselves.

For example, the containment booms and chemical dispersants that BP used after the Deepwater Horizon spill were highly ineffective, as anyone who followed the news of the spill will recall. Because of that disaster, and others besides, numerous solutions have been proposed to deal with spills in the future – ranging from filters, to tiny submarines, and oil-eating bacteria.

artificial_cactusBut most recently, a group of researchers from the Chinese Academy of Sciences have suggested a nature-inspired solution. Their concept calls for droplet-collecting “skins” modeled after cactus plants. In the desert, these pants collect moisture when condensation covers the tips of their spines and then falls under its own weight to the base and gets absorbed by the plant.

Working from this, the Chinese researchers created their own “cactus skin” – artificial cone-shaped needles made of copper and coated in silicone that. When submerged in water, the half-millimeter spikes draw down oil droplets and collect them at the bottom. According to the researchers, the method is good for 99% of oil-water mixes and works with several types of oil.

chinese_academy_of_scienceThe research appeared in the latest issue of the journal Nature Communications. According to the paper:

Underwater, these structures mimic cacti and can capture micron-sized oil droplets and continuously transport them towards the base of the conical needles. Materials with this structure show obvious advantages in micron-sized oil collection with high continuity and high throughput.

The researchers think the device could also be used in the open air to remove fine droplets released with sprays. This way, they would be able to neutralize a good portion of oil released by malfunctioning rigs before it began polluting our oceans and waterways. On top of that, research at the Academy, specifically in the Institute of Chemistry, has revealed that this same concept might provide a solution to the problem of city pollution.

Between all of this, we could be seeing artificial cactuses in city environments very soon. Just not as potted plants and in the desert! And it does say much about our biomimetic future, where we are becoming increasingly dependent on solutions born of nature to solve our environmental problems.

Sources: fastcoexist.com, inhabitat.com, scmp.com

New Space: “Sail Rover” to Explore Mercury

zephyr-580x435In addition to their ongoing plans to explore Mars for signs of life, the Jovian moon of Europa, and tow an asteroid closer to Earth, NASA also has plans to explore the surface of Venus. For decades, scientists have been yearning to get a closer look at this world’s pockmarked surface, but the volcanic activity, clouds of sulfuric acid and extreme heat are not exactly favorable to robotic rovers.

But according to NASA’s Innovative Advanced Concepts program, a windsailing rover could be just the means through which the hellish surface environment could be surveyed. This rover, nicknamed Zephyr, would use the high speeds and hot temperatures of Venus to its advantage, deploying a sail after entering the atmosphere and sailing to the ground.

mercury_surfaceThe rover would not be able to move around the surface, but would have electronics inside that are able to withstand the temperatures of 450 degrees Celsius (840 degrees Fahrenheit). Whenever the science team wanted to move some distance, however, they would deploy another sail that could use the wind to transport it across the surface. But mainly, the rover would remain on the ground conducting surface analysis.

Geoffrey Landis, who is with NASA’s Glenn Research Center and a part of the project to develop Zephyr, has long been an advocate of exploring Venus. This has included using solar powered airplane to explore the atmosphere, and colonizing the planet with floating cities. On the subject of Zephyr, he stated that:

A sail rover would be extraordinary for Venus. The sail has only two moving parts-just to set the sail and set the steering position-and that doesn’t require a lot of power. There’s no power required to actually drive. The fundamental elements of a rover for Venus are not beyond the bounds of physics. We could survive the furnace of Venus if we can come up with an innovative concept for a rover that can move on extremely low power levels.

venus_terraformedIn addition to providing volumes of information on the planet’s, exploring the surface of Venus could yield some interesting clues as to how it came to look like something out of Dante’s Inferno. It has been suggested that at one time, Venus may have boasted an atmosphere and surface water similar to Earth’s, but was transformed into a toxic nightmare thanks to a runaway Greenhouse Effect.

Studying how this came to happen would go a long way to helping scientists understand Climate Change here on Earth, and as well as give them the chance to test out possible solutions. And of course, any working solutions might go a long way towards terraforming Venus itself, which is something many scientists are currently advocating since it might be cheaper and less time consuming than transforming Mars.

Then again, if the resources and budget are there, there’s no reason why we can’t try to retool both for human settlement. After all, we might not have much a choice in the coming centuries. Human beings aren’t exactly known for their slow population growth or conservation skills!

Source: universetoday.com

The Future is Here: The Desalination Bottle

desalination_bottleDesalination might not just be handy if you find yourself lost at sea or shipwrecked on a remote island. In the near future, it might be an absolute necessity. As sea levels rise and sources of rivers, irrigation and ground water dry up, turning sea water into drinking water might be the only way to keep people hydrated and crops growing.

And that’s where this new bottle concept comes in, which was designed by a team from Yonsei University in South Korea and entered in the 2013 IDEA awards. The idea is simple: You pump a plunger at the top, pressurizing ocean water until it’s pushed through a membrane at the bottom and fresh water enters into another chamber.

puri_bottleAnd though such a water bottle does not yet exist, the students make a plausible case for what it might look like, right down to the materials for all the parts. And they’ve manage to produce advertising and a concept video of how it would work (see below). As they describe it:

The Puri portable fresh water equipment has reverse osmosis technology. This is the only product that can continually supply water when people get into marine disasters. It puts the best face on it when people get into emergency situations.

At this point, the students are likely to mount a crowdfunding campaign in order to get the necessary seed capital to develop the technology. Personally, I look forward to seeing this and other such products being made available in camping and outfitting stores. If walking the Sunshine Coast Trail has taught me and the wife anything, it’s that water is mighty precious, and not always readily available!

And be sure to check out this concept video produced by the Yonsei students, or visit their website by clicking here.


Sources:
fastcoexist.com, idsa.org

The Hillywood Show’s “Warm Bodies” Parody

hillywood_warmbodiesHilly and Hanna Hindi are back at it, this time with a video parodying the zombie flick Warm Bodies. And true to form, it comes in the form of a music video, to the song “Monster” by Lady Gaga. And as usual, the production values on this parody are very high and its beautifully shot. I always love how they manage to capture the essence of a movie through song and make fun of it at the same time.

Top to bottom, this video is ridiculously appropriate, especially for a guy like me who’s looking to capitalize on the zombie craze! Enjoy!

News From Space: We Come From Mars!

Mars_Earth_Comparison-580x356Men are from Mars, women are… also from Mars? That is the controversial theory that was proposed yesterday at the annual Goldschmidt Conference of geochemists being held in Florence, Italy. The proposal was made by Professor Steven Benner of the Westheimer Institute of Science and Technology in Florida and is the result of new evidence uncovered by his research team.

The theory that life on Earth originated on Mars has been argued before, but has remained contentious amongst the scientific community. However, Benner claims that new evidence supports the conclusion that the Red Planet really is our ancestral home by demonstrating that the elements for life here could only form on Mars, and came here via a Martian meteorite.

Asteroid-Impacts-MarsAccording to the theory, rocks violently flung up from the Red Planet’s surface during mammoth collisions with asteroids or comets then traveled millions of kilometers across interplanetary space to Earth. Once they reached Earth’s atmosphere. they melted, heated and exploded violently before the remnants crashed into the solid or liquid surface.

All that would be needed is for a few of those space born rocks to contain microbes from Mars surface. These building blocks of life would have to survive the journey through space and the impact on Earth to make this happen. But research into Exogenesis – the possibility that life was transplanted on Earth by meteorites – has already shown that this is possible.

curiosity_sol-177-1What’s more, NASA’s Curiosity Rover was expressly created to search for the the environmental conditions that would support life. Less than half a year into its mission it accomplished just that, locating proof of the existence of water and a habitable zone. Between it and the Opportunity Rover, the search to determine if life still exists – in the form of organic molecules – continues and is expected to yield results very soon.

But of course, Benner was quick to point out that there is a difference between habitability (i.e. where can life live) and origins (where might life have originated). The presence organic molecules alone is not enough when it comes to the mystery of life’s creation, and when it comes to making the great leap between having the necessarily elements and the existence of living organisms, scientists remain hung up on two paradoxes.

These are known as the tar paradox and the water paradox, respectively. The former paradox addresses how life as we know it comes down to the presence of organic molecules, which are produced by the chemistry of carbon and its compounds. However, the presence of these compounds does not ensure the creation of life, and laboratory experiments to combine and heat them has only ever produced tar.

mars_lifeAs he puts it, the origin of life involves “deserts” and oxidized forms of the elements Boron (B) and Molybdenum (Mo) – namely borate and molybdate. Essentially, these elements are the difference between the formation of tar and RNA, the very building block of life:

Certain elements seem able to control the propensity of organic materials to turn into tar, particularly boron and molybdenum, so we believe that minerals containing both were fundamental to life first starting. Analysis of a Martian meteorite recently showed that there was boron on Mars; we now believe that the oxidized form of molybdenum was there too.

The second paradox relates to water, which is believed to be intrinsic for life to flourish, but can be also hazardous to its formation. According to modern research, RNA forms prebiotically, requiring mineral species like borate to capture organic elements before they devolve into tar and molybdate to arrange the material to give it ribose – organic sugars, also intrinsic to life.

Mars-snow-header-640x353This can only occur in deserts, he claims, because water is detrimental to RNA and inhibits the formation of borates and molybdates. And from a geological standpoint, there was simply too much water covering the early Earth’s surface to allow for this creation process to take place:

[W]ater is corrosive to RNA, which scientists believe was the first genetic molecule to appear. Although there was water on Mars, it covered much smaller areas than on early Earth. Various geologists will not let us have these [borates and molybdates] on early Earth, but they will let us have them on Mars. So IF you believe what the geologists are telling you about the structure of early Earth, AND you think that you need our chemistry to get RNA, AND IF you think that life began with RNA, THEN you place life’s origins on Mars,

All of this has served to throw the previously-held theory – that life came to Earth through water, minerals and organics being transported by comets – into disarray. Based on this new theory, comets are a bad candidate for organic life since they lack the hot, dry conditions for borate and molybdate formation.

Living-Mars.2If the new theory is to be believed, Mars boasted the proper conditions to create the elements for life, while Earth possessed the water to help it flourish. If such a partnership is needed for the creation of organic life, then scientists will need to reevaluate the likelihood of finding it elsewhere in the universe. Between the existence of water and hot dry environments, life would seem to require more specialized conditions than previously though.

But of course, the debate on whether Earthlings are really Martians will continue as scientific research progresses and definitive proof is discovered and accepted by the majority of the scientific community. In the meantime, Curiosity is expected to rendezvous with Mount Sharp sometime next spring or summer, where it will determine if organic molecules and elements like Boron and Molybdenum exist there.

And on Nov. 18th, NASA will launch its next mission to Mars – the MAVEN orbiter – which will begin studying the upper Martian atmosphere for the first time, determining its previous composition, and where all the water went and when was it lost. So we can expect plenty more news to come to us from our neighboring Red Planet. Wait and see!

Source: universetoday.com