Climate Crisis: (More) Smog-Eating Buildings

pollution_eating2Air pollution is now one of the greatest health concerns in the world, exceeding cigarettes as the number one killer of people worldwide. With an estimated 7 million deaths in 2012 alone, the WHO now ranks it as the biggest global environmental killer. In fact, of the 1,600 major cities surveyed from around the world, over half are now above the safe limits of Particulate Matter (PM), with the highest cost borne by the poorer regions of South-East Asia and the Western Pacific.

Because of this, Carbon Capture technology is being seriously considered as an integral part of the future of urban planning and architecture. So in addition to addressing the issues if housing needs, urban sprawl and energy usage, major buildings in the future may also come equipped with air-cleaning features. Already, several major cities are taking advantage, and some innovative and futuristic designs have emerged as a result. Consider the following examples:

aircleaning_skyscraperCO2ngress Gateway Towers: Conceived by architects Danny Mui and Benjamin Sahagun while studying at the Illinois Institute of Technology, this concept for an air-cleaning skyscraper earned them an honorable mention in the 2012 CTBUH student competition. And while there are no currents plans to build it, it remains a fitting example of innovative architecture and merging carbon capture technology with urban planning and design.

The concept involves two crooked buildings that are outfitted with a filtration system that feeds captured CO2 to algae grown in the building’s interior, which then converts it into biofuels. Aside from the scrubbers, the buildings boast some other impressive features to cut down on urban annoyances. These include the “double skin facade”- two layers of windows – that can cut down on outside traffic noise. In addition, the spaces on either side of the buildings’ central elevator core can be used as outdoor terraces for residents.

CC_catalytic_clothingCatalytic Clothing: A collaborative effort between Helen Storey and Tony Ryan, the goal of this experiment is to incorporate the same pollution-eating titanium dioxide nanoparticles used in carbon capture façade into laundry detergent to coat clothing. According to Ryan, one person wearing the nanoparticle-washed clothes could remove 5 to 6 grams of nitrogen dioxide from the air a day; two pairs of jeans could clean up the nitrogen dioxide from one car.

If enough people in downtown New York, Beijing, Mumbai, Mexico City – or any other major city of the world renowned for urban density, high concentrations of fossil-fuel burning cars, and air pollution – would wear clothing coating with these nanoparticles, air pollution could be severely reduced in a few years time. And all at a cost of a few added cents a wash cycle!

CC_in_praise_of_airIn Praise of Air: Located in Sheffield, England, this 10×20 meter poster shows Simon Armitage’s poem “In Praise of Air”. Appropriately, the poster doubles as a pollution-eating façade that uses titanium dioxide nanoparticles. The full poem reads as follow:

I write in praise of air.  I was six or five
when a conjurer opened my knotted fist
and I held in my palm the whole of the sky.
I’ve carried it with me ever since.

Let air be a major god, its being
and touch, its breast-milk always tilted
to the lips.  Both dragonfly and Boeing
dangle in its see-through nothingness…

Among the jumbled bric-a-brac I keep
a padlocked treasure-chest of empty space,
and on days when thoughts are fuddled with smog
or civilization crosses the street

with a white handkerchief over its mouth
and cars blow kisses to our lips from theirs
I turn the key, throw back the lid, breathe deep.
My first word, everyone’s  first word, was air.

According to Tony Ryan of University of Sheffield, who created it with his colleagues, the poster can absorb about 20 cars’ worth of nitrogen oxide a day and would add less than $200 to the cost of a giant advertisement. While it is a creative tool for promoting a local poetry festival, it also serves as proof of concept that the technology can be incorporated into practically any textile, and will be reproduced on several more banners and posters in the coming months.

hyper_filter1Hyper Filter Skyscraper: Designed by Umarov Alexey of Russia, the Hyper Filter Skyscraper recognizes the threat of environmental pollution and seeks to merge carbon capture technology with the building’s design. Under today’s levels of pollution, harmful substances spread over hundreds of kilometers and a whole region and even a country could represent a single pollution source. Hence the plan to place a air-scrubbing building at the heart of the problem – an urban core.

Consistent with CC technology and the principle of photosynthesis, the Hyper Filter Skyscraper is designed to inhale carbon dioxide and other harmful gases and exhale concentrated oxygen. The skin of the project is made out of long pipe filters that ensure the cleaning process. While clean air is released to the atmosphere, all the harmful substances are stored for use in the chemical industry for later use. These can include chemicals products, biofuels, and even manufactured goods.

CC_mexico-hospital-facade-horizontal-galleryManuel Gea González Hospital: Located in Mexico City, this hospital was unveiled last year. The building features a “smog-eating” façade that covers 2,500 square meters and has titanium dioxide coating that reacts with ambient ultraviolet light to neutralize elements of air pollution, breaking them down to less noxious compounds like water. This was Berlin-based Elegant Embellishment’s first full-scale installation, and its designers claim the façade negates the effects of 1,000 vehicles each day.

Funded by Mexico’s Ministry of Health, the project is part of a three-year, $20 billion investment into the country’s health infrastructure, an effort which earned Mexico the Air Quality Prize at the 2013 City Climate Leadership Awards in London. Considering the fact that Mexico City is <i>the</i> most densely-populated cities in the world – with a population of 21 million people and a concentration of 6,000/km2 (15,000/sq mi) – this should come as no surprise.

CC-pollution-palazzo-italia-horizontal-galleryPalazzo Italia: Located in Milan, this building is designed by the architectural firm Nemesi & Partners, and comes equipped with a jungle-inspired façade that is built from air-purifying, “biodynamic” cement. This shell will cover 13,000 square meters across six floors, and will remove pollutants from the air and turns them into inert salts. Apparently, the material from Italcementi only adds 4-5 percent to the construction costs.

Scientists in the Netherlands have also adapted the photocatalytic material to roads, claiming it can reduce nitrous oxide concentrations by 45 percent. The building is set to launch next year at the 2015 Milan Expo.

Propogate Skyscraper: This pollution skyscraper was designed by Canadian architects YuHao Liu and Rui Wu, and won third place at this year’s eVolo’s Skyscraper Competition. Basically, it envisions a building that would turn air pollution into construction materials and use it to gradually create the building. Relying on an alternative carbon-capture technique that employs philic resins and material processes to transform carbon dioxide into solid construction material, their uses carbon dioxide as a means to self-propagate.

3028400-slide-propagateA simple vertical grid scaffold forms the framework and takes all the ingredients it needs for material propagation from the surrounding environment. Individual living spaces are built within this gridwork, which creates open square spaces between lattices that can then be filled by tenements. Its pattern of growth is defined by environmental factors such as wind, weather, and the saturation of carbon dioxide within the immediate atmosphere.

Thus each building is a direct reflection of its environment, growing and adapting according to local conditions and cleaning as the air as it does so. Unlike conventional skyscrapers, which rely on steel frame and concrete casting, the proposed skyscraper suggests a more environmental conscious construction method, an alternative mode of occupation and ownership, and possibly a distinct organization of social relationships.

Synthesized Spider Web: Another innovative solution comes from Oxford’s Fritz Vollrath, who was inspired by the behavior of spider silk fibers. With the addition of a glue-like coating, the thinness and electrical charge of spider silk allows them to capture any airborne particles that pass through them. These synthesized silk webs could be used like a mesh to capture pollutants – including airborne particulates, chemicals, pesticides, or heavy metals – coming out of chimneys or even disaster zones.

Spiderweb_towersSpiderweb Tower: Considering that London has some of the worst air quality in Europe, and the fact that air pollution is thought to be the second biggest risk to public health in the UK after smoking, solutions that can bring carbon capture and pollution-eating technology to downtown areas are in serious demand. And one solution comes from graduate architect Chang-Yeob Lee, who has come up with a radical design that would turn London’s BT Tower into a pollution harvesting ‘spiderweb’ that turned smog into bio-fuel.

Lee’s plan envisions the skyscraper being covered in a ‘giant eco-catalytic converter’ that traps pollutants from the capital’s air. At the same time, nano-tubes of titanium would turn carbon-dioxide into methanol and water using only the power of the sun. As Lee put it:

The project is about a new infrastructure gathering resources from pollutants in the city atmosphere, which could be another valuable commodity in the age of depleting resources.

Quite a bit of potential, and just in the nick of time too! And be sure to watch this video


Powered by the Sun: Bringing Solar to the Developing World

Magnificent CME Erupts on the Sun - August 31All over the world, the goal of bringing development to impoverished communities and nations – but in ways that won’t cause additional harm to the natural environment – remains problematic. As the cases of China and India demonstrate, the world’s fastest growing economies in the 21st century, rapid industrialization may bring economic development, but it comes with a slew of consequences.

These include urban sprawl, more emissions from cars and public transit, and the poisoning of waterways through toxic runoff, chemicals and fertilizers. With seven billion people living in the world today, the majority of which live in major cities and are dependent on fossil fuels, it is important to find ways to encourage growth that won’t make a bad situation worse.

solar_quetsolBut to paraphrase an old saying, crisis is the mother of creative solutions. And amongst forward-looking economist and developers, a possible solution is take the latest advancements in solar, wind, tidal power and biofuels, and tailor them to meet the needs of local communities. In so doing, it is hoped that the developing world could skip over the industrial phase, reaping the benefits of modernization without all the dirty, unhealthy consequences.

Two such men are Juan Rodriguez – a young man who was studying for his business administration at the Universidad Francisco Marroquin in and cut his teeth working for major multinationals like Pampers, Pepto Bismol and Pantene – and his childhood friend Manuel Aguilar, a Harvard graduate with a degree in astrophysics who had gone on to manage a global hedge fund.

solar_quetsol1Three years ago, the two agreed that they were looking for something else and began investigating renewable energy. The result was Quetsol, a company that uses solar energy to improve the quality of life of poor communities living off the electrical grid. In Rodriguez’s and Aguilar’s native Guatemala, such poverty is widespread, with close to 20% of the population living without electricity and relying primarily on candles for light.

This picture of poverty is not exactly news. But after spending a year visiting close to 100 such communities, Rodriguez and Aguilar began to get a clear picture of why solar hadn’t yet succeeded. As Rodriguez put it:

Going to a community and talking about solar power isn’t like going into a community and talking about space travel. It is something that people have already seen, because NGOs have donated solar systems to these communities for decades. In many cases, the systems worked perfectly, but eventually the batteries died, and nobody was there to service them.

solar_quetsol2There solution was to start from the bottom up, using the free-market principle of adapting their approach to meet local needs. This would involve identifying communities before visiting them, taking into account how many people were living without electricity, and what the housing situation was like. When they then visited these communities, they sought out community leaders and held public meetings to learn about them and present their ideas.

Buildings relationships with local communities was a challenge, but so was creating a product for a market whose needs ranged from basic lighting and cell phone charging to powering a refrigerator all day. What they found was that unelectrified communities were relying on terribly inefficient means, ranging from diesel generators to walking to the nearest electrified community to plug in a phone.

solar_quetsol3What was resulted was a Solar Kit, consisting of a 10W Solar Panel, a control box with 7 Amp Battery, 2  LED Bulbs  (and a third optional bulb), and a universal cell phone charger. This kit has the ability to provide five hours of electricity to a house made up of two rooms that measure roughly 25 square meters (225 square feet) each. This is the typical design of homes in rural Guatemala, with one room serving as the bedroom and the other as the kitchen.

With that done, they began working on their sales strategy. Initially, this consisted of working with microfinance credit institutions to help families and communities purchase their solar kits. But after watching too many credit applications get rejected, they took a page from the telecom companies that have made cell phones ubiquitous in Guatemala, Basically, they switched to a pay-as-you-go plan.

solar_quetsol4Today, Quetsol employs a staff of 20 people and boasts board members like Google’s Tom Chi. There product line has also expanded, with the Q1 Solar Kit being supplemented by the Q3, a heavier model that boasts a 75W solar panel, an 85 Amp Battery, and five LED bulbs. The Q2 Kit – a middle of the road model with a 30W panel, 34 amp battery and 3 bulbs – is soon to be released.

But most importantly of all, they have electrified more than 3,500 homes in Guatemala thus far. But that is just a drop in the bucket compared to their long-term goal. Basically, the organization is viewing Guatemala as a stepping stone to all of Latin America as well as Africa by 2015. By 2016, they’d like to tackle the nearly 700 million off-the-grid homes in Asia.

Might sound ambitious, but Rodriguez and Marroquin feel they have the business acumen and social entrepreneurial savvy to pull it off. And given their background and business model, I’d say they are about right. Combined with other technologies that merge local needs with clean, efficient, and renewable means, development in the developing world might actually be an eco-friendly possibility.



Cities of the Future: Building with Bacteria

bio-building1Since the beginning of civilization, building hasn’t evolved much. In fact, archaeological digs show that between the Early Paleolithic and today, construction has moved at a snail’s pace. And while change has certainly sped up within the past few centuries – with mud and stone giving way to bricks and cement and thatch and wood giving way to steel and shingles –  the fundamental techniques and concepts remain largely unchanged.

However, a radical shift may soon be underway where traditional factories will give way to biological ones, and the processing of raw materials using hands and tools will be replaced by an active collaboration between human architects and cells specifically programmed to create building materials. In this new age, biology, rather than machining, will be the determining factor and buildings will be grown, not assembled.

the-livingAlready, biological processes have been used to manufacture medicine and biofuels. But the more robust materials for everyday life – like roofs, beams, floor panels, etc – are still the domain of factories. However, thanks to researchers like David Benjamin – a computational architect, professor at Columbia University, and the principal of the The Living (a New York architectural practice).

The purpose of The Living’s research is to redirect and engineer biological processes and then capture them using computational models. The end result is what is known as “human-cell collaboration”, where humans specify the shape and properties of a desired material and computers translate them into biological models. Patterned “sheets” of bacterial cells are then grown in the lab, determining the final design based on what was encoded in the DNA.

bio-buildingEmerging software, says Benjamin, will soon allow architects to create multi-material objects in a computer, translate these into biological models, and let biology finish the job. This will be done in laboratories, growing them under carefully engineered conditions, or tweaking the DNA to achieve precisely the right result before deploying them to build.

At the moment, Benjamin and his colleagues are working with plant cells known as xylem – the long hollow tubes that transport water in plants. These are being designed as computer models and grown in a Cambridge University lab in conjunction with various species of engineered bacteria. In addition, they are working with sheets of calcium and cellulose, seeking to create structures that will be strong, flexible, and filigreed.

And of course, Benjamin and The Living are hardly alone in their endeavors. Living Foundries Program, for example, is a a Department of Defense initiative that is hoping to hasten the developmental process and create an emergent bio-industry that would create “on-demand” production and shave decades and millions of dollars off the development, the process is far from perfect, and could take another decade to become commercially viable. But this is a relatively short time frame given the revolutionary implications. This, in turn, may open up what the former U.S. energy secretary Stephen Chu has called the “glucose economy,” an economic system powered largely by plant-derived sugars grown in tropical countries and shipped around the world, much as we do with petroleum today.

Once factories switch to sugar as a primary energy source, and precisely engineered bacteria become the means of manufacture, the model of human civilization may flip from one powered by fossil fuels to one running largely on biologically captured sunlight. It’s one of the hallmarks of the future, where programmed biology is used to merge the synthetic with the biological and create a “best of both worlds scenario”.

In the meantime, check out this conceptual video by one of Benjamin’s collaborators about the future of bio-building. And be sure to check out some of the The Living’s other projects by clicking here.


Climate Crisis: Rising Tides and Sinking Cities

climate_changetideWith all the population, urban sprawl, and consumption that we as a species are imposing on the planet, there are those who argue that we’ve entered a new geological era – known as the Anthropocene. It’s an age we’ve lived in since the neolithic revolution and the advent of farming, one where the human race is the dominant force shaping our planet. Since the industrial revolution, this era has been accelerating and escalating, and things are not likely to get better anytime soon.

It is because of this that we need to contemplate what the near future will look like. Consider the recent floods in the Canadian Prairies, or last year’s wildfires which raged across the American midwest. Consider the famines and shortages that led to a world food price crisis in 2007-8 which had serious political consequences, especially in the Middle East (i.e. the Arab Spring).

climate_changesandyWhen you add to this the fact that rising tides and the increased risk of storms are already effecting coastal communities in severe ways, you begin to understand just how turbulent the next few decades are likely to be. Already, incidents like Hurricane Katrina and Sandy, which rocked the Gulf of Mexico and the Eastern Seaboard in just the past decade, have shown just how extensive the damage can be.

Historically speaking, cities have been built in fertile river valleys and at river mouths to take advantage of fertile conditions, maritime resources and trade. Agricultural run-offs of sediment, water and nutrients created rich coastal deltas that could support greater food production. This and the good maritime and river connections for trade and transport made these ideal places to live.

Population_curve.svgBut as populations grew, rivers were tapped and diverted for irrigation, industry and canal transport. They were also trapped behind dams and reservoirs for energy and water storage, and depleted by droughts and other extractions. Meanwhile groundwater is increasingly being extracted from beneath cities, and sea levels are rising because of the run-off from the melting of glaciers and thermal expansion of the oceans.

As a result of these changes, many major cities are slowly sinking into the oceans. Our rapid industrialization over the past century has sped these processes, so that now, many urban centers face inundation by storm surges, and we stand to lose many of the most economically important parts of our planet. The loss of these cities will mean a terrible loss of life, economic fallout, and a massive refugee crisis.

Population_densityCities from Bangkok to New York have already experienced emergency flood conditions, and many more are to follow. Those most at risk include Mumbai, Guangzhou, Shanghai, Miami, Ho Chi Minh City, Calcutta, New York City, Osaka-Kibe, Alexandria and New Orleans. More than 3 billion people currently live in coastal areas at risk of global warming impacts such as rising sea levels – a number expected to rise to 6 billion by 2025.

And as was recently learned, the carbon levels in the upper atmosphere have surpassed 400 ppm (parts per million). The last time the atmosphere boasted this concentration of greenhouse gases was the Pliocene Era, a time when sea levels were as much as 60 to 80 feet higher than they current are. If sea levels rise to that level again, we can say goodbye to all these major cities, as well as any that sit on major waterways.

climate_changeshanghaiIt’s not just a matter of water rising up to swallow the coastlines, you see. As the flooding in southern Alberta and the Canadian Prairies demonstrated this week, there’s also the threat of flooding due to increased precipitation and of sewage systems backing up from increased storms and rainfall. These threats make shoring up river deltas and waterways effectively useless, since its not simply a matter of blocking the tides and rivers.

In terms of solutions, a number of major cities are investing in new sea walls, dykes and polders, or high-tide gates – like London’s Thames Barrier – to hold back high waters. In poorer places, people simply endure the problem until they are forced to abandon their homes. As the problem gets worse though, coordinated efforts to rescue people caught in flood zones will need to be mounted.

climate_changedykesAnd there are those who speculate that underwriting the damage will be a waste of time, since no government will be able to afford to compensate its citizens for the untold billions in property damage. In reality, many of these place will simply have to be abandoned as they become unlivable, and those forced out resettled to higher ground or protected communities.

At this point in any lecture on the fate of our planet, people are about ready to abandon hope and hang themselves. Hence, I should take this opportunity to point out that plans for dealing with the problem at the root – cutting our carbon footprint – are well underway. In addition to clean energy becoming more and more feasible commercially, there are also some very viable concepts for carbon capture.

These include inventions like artificial trees and ecoengineering, which will no doubt become absolutely essential in coming years. At the same time though, urban planning and architecture are beginning to embrace a number of alternative and clean technology concepts as part of their design. Not only will future buildings be designed to provide for the needs of their residents – food, water, electricity – in sustainable ways, they will also incorporate devices that can trap smog and turn it into biofuels and other useful products.

Of this, I will be saying more in the next post “Thinking, Breathing Cities of the Future”. Stay tuned!


The Future is Here: The Air Scrubbing Skyscraper!

aircleaning_skyscraperAir pollution has always been a problem in urban centers. But with the massive industrialization and urban expansion taking place in some of the most heavily populated regions of the world (China and India being foremost), the issue of how to deal with increasing emissions is especially important. And more and more, researchers and environmentalists are considering options that hits air pollution where it lives.

Two such individuals are Danny Mui and Benjamin Sahagun, a pair of architects who have devised a rather novel concept for dealing with the thick layers of carbon dioxide pollution that are so common to major urban centers. In essence, it is a pair of buildings that scrub CO2 emissions from the air, and thus marries the concept of Carbon Capture technology to urban planning.

artificial_trees1Dubbed the CO2ngress Gateway Towers, the concept involves two crooked buildings that are outfitted with a filtration system. This system then feeds the captured CO2 to algae grown in the building which then converts into biofuels for use in vehicles. In this respect, it is not unlike the artificial tree concept designed by Klaus Lackner, director of the Lenfest Center for Sustainable Energy at Columbia University.

Much like these “trees”, the carbon capture technology involves using a entirely natural process to absorb CO2 from the air and then combine it with water, thus causing a chemical reaction that results in a fossil fuel precursor which can easily be converted. This fuel can then be consumed as gasoline or ethanol, thus giving people the ability to keep burning fossil fuels while they research cleaner, more sustainable sources of fuel.

aircleaning_skyscraper3Ultimately, the idea here is not to offer a be-all, end-all solution to the problem, but rather to buy the human race time to clean up its act. And by ensuring that carbon capture technology is available in large urban dwellings, they are looking to ensure that one of the many symptoms of urban sprawl – i.e. large urban dwellings – are part of the solution.

Said Mui and Sahagun on the Council on Tall Buildings and Urban Habitat (CTBUH) website:

The scrubbers are the first step in a process that generates fuel for a fleet of eco-friendly cars for building residents. The system raises public awareness of air pollution and its impact on the health of Chicagoans.

aircleaning_skyscraper1Aside from the scrubbers, the buildings boast some other impressive features to cut down on urban annoyances. These include the “double skin facade”- two layers of windows – that can cut down on outside traffic noise. In addition, the spaces on either side of the buildings’ central elevator core can be used as outdoor terraces for residents.

Apparently, Mui and Sahagun worked on the project while students at the Illinois Institute of Technology, where it earned them an honorable mention in the 2012 CTBUH student competition. According to Mui, they created the structure after the semester ended, but there are no immediate plans to build it.

aircleaning_skyscraper2However, given the growing interest in arcologies and urban structures that reduce our impact on the environment, it is likely to garner serious interest very soon. Especially in China, where air pollution is so severe that it causes up to 750,000 deaths from respiratory illness a year and cities are still growing, buildings like this one could easily become the stone that kills two birds.