The Future is Here: Deka Mind-Controlled Arm Gets FDA Approval!

Deka_armFor years, biomedical researchers have been developing robotic prosthetics of greater and greater sophistication. From analog devices that can be quickly and cheaply manufactured by a 3-D printer, to mind-controlled prosthetics that move, to ones that both move and relay sensory information, the technology is growing by leaps and bounds. And just last week, the FDA officially announced it had approved the first prosthetic arm that’s capable of performing multiple simultaneous powered movements.

The new Deka arm – codenamed Luke, after Luke Skywalker’s artificial hand – was developed by Dean Kamen, inventor of the Segway. The project began in 2006 when DARPA funded multiple research initiatives in an attempt to create a better class of prosthetic device for veterans returning home from the Iraq War. Now, the FDA’s approval is a huge step for the Deka, as it means the devices are now clear for sale — provided the company can find a commercial partner willing to bring them to market.

Deka_arm1Compared to other prosthetics, the Deka Arm System is a battery-powered device that combines multiple approaches. Some of the Deka’s functions are controlled by myoelectricity, which means the device senses movement in various muscle groups via attached electrodes, then converts those muscle movements into motor control. This allows the user a more natural and intuitive method of controlling the arm rather than relying on a cross-body pulley system.

Deka_Arm2The more advanced myoelectric systems can even transmit sensation back to the user, using the same system of electrodes to simulate pressure sensation for the user. This type of control flexibility is essential to creating a device that can address the wide range of needs from various amputees, and the Deka’s degree of fine-grained control is remarkable. Not only are user’s able to perform a wide range of movements and articulations with the hand, they are able to sense what they are doing thanks to the small pads on the fingertips and palm.

Naturally, the issue of price remains, which is consequently the greatest challenge facing the wide-scale adoption of these types of devices. A simple prosthestic arm is likely to cost $3000, while a sophisticated prosthesis can run as much as $50,000. In many cases, limbs have a relatively short lifespan, with wear and tear requiring a replacement device 3 to 4 years. Hence why 3-D printed variations, which do not boast much sophistication, are considered a popular option.

bionic-handVisual presentation is also a major issue, as amputees often own multiple prostheses (including cosmetic ones) simply to avoid the embarrassment of wearing an obviously artificial limb. That’s one reason why the Deka Arm System’s design has evolved towards a much more normal-looking hand. Many amputees don’t want to wear a crude-looking mechanical device.

At present, the prosthetic market is still too broad, and the needs of amputees too specific to declare any single device as a one-size-fits-all success. But the Deka looks as though it could move the science of amputation forward and offer a significant number of veterans and amputees a device that more closely mimics natural human function than anything we’ve seen before. What’s more, combined with mind-controlled legs, bionic eyes and replacement organs, it is a major step forward in the ongoing goal of making disability a thing of the past.

And in the meantime, check out this DARPA video of the Deka Arm being tested:

 


Source: extremetech.com

The Future is Here: 3-D Printed Eye Cells

printed_eyecells3In the past few years, medical researchers have been able to replicate real, living tissues samples using 3-D printing technology – ranging from replacement ears and printed cartilage to miniature kidneys and even liver cells. Well now, thanks to a team of researchers from the University of Cambridge, eye cells have been added to that list.

Using a standard ink-jet printer to form layers of two types of cells,  the research team managed to print two types of central nervous system cells from the retinas of adult rats – ganglion cells (which transmit information from the eye to the brain), and glial cells (which provide protection and support for neurons). The resulting cells were able to grow normally and remain healthy in culture.

printed_eyecells2Ink-jet printing has been used to deposit cells before, but this is the first time cells from an adult animal’s central nervous system have been printed. The research team published its research in the IOP Publishing’s open-access journal Biofabrication and plans to extend this study to print other cells of the retina and light-sensitive photoreceptors.

In the report, Keith Martin and Barbara Lorber – the co-authors of the paper who work at the John van Geest Centre for Brain Repair at the University of Cambridge – explained the experiment in detail:

Our study has shown, for the first time, that cells derived from the mature central nervous system, the eye, can be printed using a piezoelectric inkjet printer. Although our results are preliminary and much more work is still required, the aim is to develop this technology for use in retinal repair in the future.

printed_eyecellsThis is especially good news for people with impaired visual acuity, or those who fear losing their sight, as it could lead to new therapies for retinal disorders such as blindness and macular degeneration. Naturally, more tests are needed before human trials can begin. But the research and its conclusions are quite reassuring that eye cells can not only be produced synthetically, but will remain healthy after they are produced.

Clara Eaglen, a spokesperson for the Royal National Institute of Blind People (RNIB), had this to say about the breakthrough:

The key to this research, once the technology has moved on, will be how much useful vision is restored. Even a small bit of sight can make a real difference, for some people it could be the difference between leaving the house on their own or not. It could help boost people’s confidence and in turn their independence.

printed_eyecells1Combined with bionic eyes that are now approved for distribution in the US, and stem cell treatments that have restores sight in mice, this could be the beginning of the end of blindness. And with all the strides being made in bioprinting and biofabrication, it could also be another step on the long road to replacement organs and print-on-demand body parts.

Sources: news.cnet.com, singularityhub.com, cam.ca.uk, bbc.co.uk

The Future is Here: The Telescopic Contact Lense

telescopic_contact_lensWhen it comes to enhancement technology, DARPA has its hands in many programs designed to augment a soldier’s senses. Their latest invention, the telescopic contact lens, is just one of many, but it may be the most impressive to date. Not only is it capable of giving soldiers the ability to spot and focus in on faraway objects, it may also have numerous civilian applications as well.

The lens is the result of collaboration between researchers from the University of California San Diego, Ecole Polytechnique Federale de Lausanne in Switzerland, and the Pacific Science & Engineering Group, with the financial assistance of DARPA. Led by Joseph Ford of UCSD and Eric Tremblay of EPFL, the development of the lens was announced in a recent article entitled “Switchable telescopic contact lens” that appeared in the Optics Express journal.

telescopic-contact-lens-2

In addition to being just over a millimeter thick, the lens works by using a series of tiny mirrors to magnify light, and can be switched between normal and telescopic vision, which is due to the lens having two distinct regions. The first The center of the lens allows light to pass straight through, providing normal vision. The outside edge, however, acts as a telescope capable of magnifying your sight by close to a factor of three.

Above all, the main breakthrough here is that this telescopic contact lens is just 1.17mm thick, allowing it to be comfortably worn. Other attempts at granting telescopic vision have included a 4.4mm-thick contact lens (too thick for real-world use), telescopic spectacles (cumbersome and ugly), and most recently a telescopic lens implanted into the eye itself. The latter is currently the best option currently available, but it requires surgery and the image quality isn’t excellent.

Telescopic-Contact-Lens-3To accomplish this feet of micro-engineering, the researchers had to be rather creative. The light that will be magnified enters the edge of the contact lens, is bounced around four times inside the lens using patterned aluminum mirrors, and then beamed to the edge of the retina at the back of your eyeball. Or as the research team put it in their article:

The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

To switch between normal and telescopic vision, the central, unmagnified region of the contact lens has a polarizing filter in front of it — which works in tandem with a pair of 3D TV spectacles. By switching the polarizing state of the spectacles – a pair of active, liquid crystal Samsung 3D specs in this case – the user can choose between normal and magnified vision.

AR_glassesThough the project is being funded by DARPA for military use, the research team also indicated that the real long-term benefits of a device like this one come in the form of civilian and commercial applications. For those people suffering from age-related macular degeneration (AMD) – a leading cause of blindness for older adults – this lens could be used to correct for vision loss.

As always, enhancement technology is a two-edged sword. Devices and systems that are created to address disabilities and limitations have the added benefit of augmenting people who are otherwise healthy and ambulatory. The reverse is also true, with specialized machines that can make a person stronger, faster, and more aware providing amputees and physically challenged people the ability to overcome these imposed limitations.

telescopic-contact-lens-5However, before anyone starts thinking that all they need to slip on a pair of these to get superhero-like vision, there are certain limitations. As already stated, the lens doesn’t work on its own but needs to be paired with a modified set of 3D television glasses for it to work. Simply placing it on the pupil and expecting magnified vision is yet not an option.

Also, though the device has been tested using computer modeling and by attaching a prototype lens to a optomechanical model eye, it has not been tested on a set of human eyes just yet. As always, there is still a lot of work to do with refining the technology and improving the image quality, but it’s clear at this early juncture that the work holds a lot of promise.

It’s the age of bionic enhancements people, are we find ourselves at the forefront of it. As time goes on, we can expect such devices to become a regular feature of our society.

Sources: news.cnet.com, extremetech.com

The Future is Here: Bionic Eye Approved by FDA!

Argus-IIAfter more than 20 years in the making, the Argus II bionic eye was finally approved this past February by the Food and Drug Administration for commercial sale in the US. For people suffering from the rare genetic condition known as retinitis pigmentosa – an inherited, degenerative eye disease that causes severe vision impairment and often blindness – this is certainly good news indeed.

Developed by Second Sight, the Argus II is what is known as a “Retinal Prosthesis System” (RPS) that corrects the main effect of retinitis pigmentosa, which is the diminished ability to distinguish light from dark. While it doesn’t actually restore vision to people who suffer from this condition, it can improve their perceptions of light and dark, and thus identify the movement or location of objects.

argusII_1The Argus II works by using a series of electrodes implanted onto the retina that are wirelessly connected to a video camera mounted on the eyeglasses. The eye-electrodes use electrical impulses transmitted from the camera to stimulate the part of the retina that allows for image perception. By circumventing the parts of the eye effected by the disease, the bionic device is a prosthetic in every sense of the word.

According to Suber S. Huang, director of the University Hospital Eye Institute’s Center for Retina and Macular Disease, the breakthrough treatment is:

 [R]emarkable. The system offers a profound benefit for people who are blind from RP and who currently have no therapy available to them. Argus II allows patients to reclaim their independence and improve their lives.

ArgusIIArgus II boasts 20-plus years of research, three clinical trials, and more than $200 million in private and public investment behind it. Still, the system has been categorized by the FDA as a humanitarian use device, meaning there is a “reasonable assurance” that the device is safe and its “probable benefit outweighs the risk of illness or injury.”

Good news for people with vision impairment, and a big step in the direction of restoring sight. And of course, a possible step on the road to human enhancement and augmentation. As always, every development that is made in the direction of correcting human impairment offers the future possibility of augmenting otherwise unimpaired human beings.

infraredAs such, it might not be long before there are devices that can give the average human the ability to see in the invisible spectrum, such as IR and ultra-violet frequencies. Perhaps also something that can detect x-rays, gamma ray radiation, and other harmful particles. Given that the very definition of cyborg is “a being with both organic and cybernetic parts”, the integration of this device means the birth of the cybernetic age.

And be sure to check out this promotional video by Second Sight showing how the device works:

Source: news.cnet.com

Biotech News: Artificial Ears and Bionic Eyes!

3d_earLast week was quite the exciting time for the field of biotechnology! Thanks to improvements in 3D printing and cybernetics – the one seeking to use living cells to print organic tissues and the other seeking to merge the synthetic with the organic – the line between artificial and real is becoming blurrier all the time. And as it turns out, two more major developments were announced just last week which have blurred it even further.

The first came from Cornell University, where a team of biotech researchers demonstrated that it was possible to print a replacement ear ear using a 3D printer and an injection of living cells. Using a process the team refers to as “high-fidelity tissue engineering”,  they used the cartilage from a cow for the ears interior and overlaid it with artificially generated skin cells to produce a fully-organic replacement.

3dstemcellsThis process builds on a number of breakthroughs in recent years involving 3D printers, stem cells, and the ability to create living tissue by arranging these cells in prearranged fashions. Naturally, the process is still in its infancy; but once refined, it will allow biomedical engineers to print customized ears for children born with malformed ones, or people who have lost theirs to accident or disease.

What’s more, the Cornell research team also envision a day in the near future when it’ll be possible to cultivate enough of a person’s own tissue so that the growth and implantation can happen all within the lab. And given recent the breakthrough at Wake Forest Institute of Regenerative Medicine- where researchers were able to create printed cartilage – it won’t be long before all the bio-materials can be created on-site as well.

Eye-cameraThe second breakthrough, which also occurred during this past week, took place in Germany, where researchers unveiled the world’s first high-resolution, user-configurable bionic eye. Known officially as the “Alpha IMS retinal prosthesis”, the device comes to us from the University of of Tübingen, where scientists have been working for some time to build and improve upon existing retinal prosthetics, such as Argus II – a retinal prosthesis developed by California-based company Second Sight.

Much like its predecessor, the Alpha IMS helps to restore vision by imitating the functions of a normal eye, where light is converted into electrical signals your retina and then transmitted to the brain via the optic nerve. In an eye that’s been afflicted by macular generation or diabetic retinophathy, these signals aren’t generated. Thus, the prosthetic works by essentially replacing the damaged piece of your retina with a computer chip that generates electrical signals that can be understood by your brain.

biotech_retinal-implantBut of course, the Alpha IMS improves upon previous prosthetics in a number of ways. First, it is connected to your brain via 1,500 electrodes (as opposed to the Argus II’s 60 electrodes) providing unparalleled visual acuity and resolution. Second, whereas the Argus II relies on an external camera to relay data to the implant embedded in your retina, the Alpha IMS is completely self-contained. This allows users to swivel the eye around as they would a normal eye, whereas the Argus II and others like it require the user to turn their head to change their angle of sight.

Here too the technology is still in its infancy and has a long way to go before it can outdo the real thing. For the most part, bionic eyes are still rely heavily on the user’s brain to make sense of the alien signals being pumped into it. However, thanks to the addition of configurable settings, patients have a degree of control over their perceived environment that most cannot begin to enjoy. So really, its not likely to be too long before these bionic implants improve upon the fleshy ones we come equipped with.

biotech_dnaWow, what a week! It seems that these days, one has barely has to wait at all to find that the next big thing is happening right under their very nose. I can foresee a future where people no longer fear getting into accidents, suffering burns, or losing their right eye (or left, I don’t discriminate). With the ability to regrow flesh and cartilage, and replace organic tissues with bionic ones, there may yet come a time when a human can have a close-shave with death and be entirely rebuilt.

I foresee death sports becoming a hell of a lot more popular in this future… Well, crap on me! And while we’re waiting for this future to occur, feel free to check out this animated video of the Alpha IMS being installed and how it works:


Sources:
IO9.com, Extremetech.com