The Future of Medicine: Improved Malaria Vaccine

flu_vaccineOf the many advances made by medical science in the past century, vaccinations are arguably the greatest. With the ability to inoculate people against infection, diseases like yellow fever, measles, rubella, mumps, typhoid, tetanus, polio, tuberculosis, and even the common flu have become controllable – if not eliminated. Nevertheless, medical researchers agree that there are still some things that can be improved upon when it comes to vaccinations.

Beyond the controversies surrounding a supposed link between vaccinations and autism, there is the simple fact that the current method of inoculating people is rather invasive. Basically, it requires people to sit through the rather uncomfortable process of being stuck with a needle, oftentimes in an uncomfortable place (like the shoulder). Luckily, many researchers are working on a way to immunize people using gentler methods.

malaria_vaccineAt the University College Cork in Ireland, for example, scientists have just finished pre-clinical testing on an experimental malaria vaccine that is delivered through the skin. To deliver the vaccine into the body, the researchers used a skin patch with arrays of tiny silicon microneedles that painlessly create temporary pores. These pores provide an entry point for the vaccine to flow into the skin, as the patch dissolves and releases the drug.

To make the vaccine, the team used a live adenovirus similar to the virus that causes the common cold, but which they engineered to be safer and produce the same protein as the parasite that causes malaria. Adenoviruses are one of the most powerful vaccine platforms scientists have tested, and the one they used produced strong immunity responses to the malaria antigen with lower doses of the vaccine.

TB_microneedlesThe research showed that the administration of the vaccine with the microneedle patch solves a shortcoming related to this type of vaccine, which is inducing immunity to the viral vector – that is, to the vaccine itself. By overcoming this obstacle, the logistics and costs of vaccination could be simpler and cheaper as it would not require boosters to be made with different strains. Besides, with no needles or pain involved, there’s bigger potential to reach more people requiring inoculation.

This is similar to the array used by researchers at King’s College in London, who are also developing a patch for possible HIV vaccine delivery. Researchers at University of Washington used a similar method last year to deliver the tuberculosis vaccine. The method is an improvement on this type of vaccine delivery since it is painless and non-invasive. It’s use is also being researched in relation to other infections, including Ebola and HIV.

The details of the research appeared in the journal Nature. Lead researcher, Dr. Anne Moore, is set to negotiate with Silicon Valley investors and technology companies to commercialize the vaccine.

Sources: gizmag.com, (2), ucc.ie, nature.com

Climate Crisis: Climate Bomb in the Arctic?

icecapThe northern polar regions are considered by many to be the main battle grounds when it comes to Climate Change. The slow melting of the planet’s ice caps are rapidly melting, which in turn leads to increasing sea levels, and an increase in the amount of solar radiation our oceans absorb. However, according to a new theory, the disappearance of the ice sheet might also release a “time bomb” of greenhouse gas.

The theory appeared in recent paper submitted to the journal Nature. which argued that warming temperatures could release 50 billion tons of methane currently frozen in the Arctic seabed. Because methane is a potent greenhouse gas, such a huge release could drastically speed up the rate at which the sea ice retreats, the amount of solar energy that the ocean absorbs, and exacerbate the ongoing melt.

NASA_global_warming_predIt could also mean global temperatures rising more quickly, moving the world’s climate past generally-agreed-upon “tipping point” limits. Using the same methodology as the Stern Review, a landmark study from 2006. the papers authors  – Gail Whiteman, Peter Wadhams, and Chris Hope of Cambridge University – put a price tag on the potential damage:

The release of methane from thawing permafrost beneath the East Siberian Sea, off northern Russia, alone comes with an average global price tag of $60 trillion in the absence of mitigating action–a figure comparable to the size of the world economy in 2012 (about $70 trillion). The total cost of Arctic change will be much higher.

Using various scenarios, they say the methane could take from 10 to 50 years to emerge. But they’re clear about who’ll be hit hardest:

The economic consequences will be distributed around the globe, but the modeling shows that about 80% of them will occur in the poorer economies of Africa, Asia and South America. The extra methane magnifies flooding of low-lying areas, extreme heat stress, droughts and storms.

This is certainly consistent with existing Climate Change scenarios that predict the presence of severe drought in Central and South America, sub-Saharan Africa, and South and East Asia – the most populous regions of the Earth accounting for roughly 3 billion people.

Pollution over Mexico CityHowever, there are those who dispute this theory beyond the usual crop of Climate Change deniers. According to these dissenting views, the methane is unlikely to escape to the atmosphere as quickly as the paper predicts, and that some of it could be broken down in the ocean.

But Nafeez Ahmed, director of the Institute for Policy Research and Development, says these skeptics are relying on outdated models. The reality on the ground, as captured by scientists with the International Arctic Research Center, is that temperatures are rising faster than elsewhere and that current ice melt is consistent with the methane effect.

Global_Warming_Predictions_MapTo make matters worse, even if the methane emerges slowly, it would still be catastrophic. The research performed by Whiteman, Wadham, and Hope shows that the effects will be the same, regardless of whether or the methane is released over a 50 year period or a 10 year period. The key is mitigating factors, which call for immediate and ongoing intervention to ensure that worst doesn’t happen.

Bad news indeed, and it further demonstrates the dangers of what is referred to as a the “feedback mechanism” of Climate Change. As things get worse, we can expect the rate at which they get worse to increase at every step. And considering the likely social, political and economic impact of these changes, the ramifications of these new predictions are dire indeed.

Source: fastcoexist.com