The Fate of Humanity

the-futureWelcome to the world of tomorroooooow! Or more precisely, to many possible scenarios that humanity could face as it steps into the future. Perhaps it’s been all this talk of late about the future of humanity, how space exploration and colonization may be the only way to ensure our survival. Or it could be I’m just recalling what a friend of mine – Chris A. Jackson – wrote with his “Flash in the Pan” piece – a short that consequently inspired me to write the novel Source.

Either way, I’ve been thinking about the likely future scenarios and thought I should include it alongside the Timeline of the Future. After all, once cannot predict the course of the future as much as predict possible outcomes and paths, and trust that the one they believe in the most will come true. So, borrowing from the same format Chris used, here are a few potential fates, listed from worst to best – or least to most advanced.

1. Humanrien:
extinctionDue to the runaway effects of Climate Change during the 21st/22nd centuries, the Earth is now a desolate shadow of its once-great self. Humanity is non-existent, as are many other species of mammals, avians, reptiles, and insects. And it is predicted that the process will continue into the foreseeable future, until such time as the atmosphere becomes a poisoned, sulfuric vapor and the ground nothing more than windswept ashes and molten metal.

One thing is clear though: the Earth will never recover, and humanity’s failure to seed other planets with life and maintain a sustainable existence on Earth has led to its extinction. The universe shrugs and carries on…

2. Post-Apocalyptic:
post-apocalypticWhether it is due to nuclear war, a bio-engineered plague, or some kind of “nanocaust”, civilization as we know it has come to an end. All major cities lie in ruin and are populated only marauders and street gangs, the more peaceful-minded people having fled to the countryside long ago. In scattered locations along major rivers, coastlines, or within small pockets of land, tiny communities have formed and eke out an existence from the surrounding countryside.

At this point, it is unclear if humanity will recover or remain at the level of a pre-industrial civilization forever. One thing seems clear, that humanity will not go extinct just yet. With so many pockets spread across the entire planet, no single fate could claim all of them anytime soon. At least, one can hope that it won’t.

3. Dog Days:
arcology_lillypadThe world continues to endure recession as resource shortages, high food prices, and diminishing space for real estate continue to plague the global economy. Fuel prices remain high, and opposition to new drilling and oil and natural gas extraction are being blamed. Add to that the crushing burdens of displacement and flooding that is costing governments billions of dollars a year, and you have life as we know it.

The smart money appears to be in offshore real-estate, where Lillypad cities and Arcologies are being built along the coastlines of the world. Already, habitats have been built in Boston, New York, New Orleans, Tokyo, Shanghai, Hong Kong and the south of France, and more are expected in the coming years. These are the most promising solution of what to do about the constant flooding and damage being caused by rising tides and increased coastal storms.

In these largely self-contained cities, those who can afford space intend to wait out the worst. It is expected that by the mid-point of the 22nd century, virtually all major ocean-front cities will be abandoned and those that sit on major waterways will be protected by huge levies. Farmland will also be virtually non-existent except within the Polar Belts, which means the people living in the most populous regions of the world will either have to migrate or die.

No one knows how the world’s 9 billion will endure in that time, but for the roughly 100 million living at sea, it’s not a going concern.

4. Technological Plateau:
computer_chip4Computers have reached a threshold of speed and processing power. Despite the discovery of graphene, the use of optical components, and the development of quantum computing/internet principles, it now seems that machines are as smart as they will ever be. That is to say, they are only slightly more intelligent than humans, and still can’t seem to beat the Turing Test with any consistency.

It seems the long awaited-for explosion in learning and intelligence predicted by Von Neumann, Kurzweil and Vinge seems to have fallen flat. That being said, life is getting better. With all the advances turned towards finding solutions to humanity’s problems, alternative energy, medicine, cybernetics and space exploration are still growing apace; just not as fast or awesomely as people in the previous century had hoped.

Missions to Mars have been mounted, but a colony on that world is still a long ways away. A settlement on the Moon has been built, but mainly to monitor the research and solar energy concerns that exist there. And the problem of global food shortages and CO2 emissions is steadily declining. It seems that the words “sane planning, sensible tomorrow” have come to characterize humanity’s existence. Which is good… not great, but good.

Humanity’s greatest expectations may have yielded some disappointment, but everyone agrees that things could have been a hell of a lot worse!

5. The Green Revolution:
MarsGreenhouse2The global population has reached 10 billion. But the good news is, its been that way for several decades. Thanks to smart housing, hydroponics and urban farms, hunger and malnutrition have been eliminated. The needs of the Earth’s people are also being met by a combination of wind, solar, tidal, geothermal and fusion power. And though space is not exactly at a premium, there is little want for housing anymore.

Additive manufacturing, biomanufacturing and nanomanufacturing have all led to an explosion in how public spaces are built and administered. Though it has led to the elimination of human construction and skilled labor, the process is much safer, cleaner, efficient, and has ensured that anything built within the past half-century is harmonious with the surrounding environment.

This explosion is geological engineering is due in part to settlement efforts on Mars and the terraforming of Venus. Building a liveable environment on one and transforming the acidic atmosphere on the other have helped humanity to test key technologies and processes used to end global warming and rehabilitate the seas and soil here on Earth. Over 100,000 people now call themselves “Martian”, and an additional 10,000 Venusians are expected before long.

Colonization is an especially attractive prospect for those who feel that Earth is too crowded, too conservative, and lacking in personal space…

6. Intrepid Explorers:
spacex-icarus-670Humanity has successfully colonized Mars, Venus, and is busy settling the many moons of the outer Solar System. Current population statistics indicate that over 50 billion people now live on a dozen worlds, and many are feeling the itch for adventure. With deep-space exploration now practical, thanks to the development of the Alcubierre Warp Drive, many missions have been mounted to explore and colonizing neighboring star systems.

These include Earth’s immediate neighbor, Alpha Centauri, but also the viable star systems of Tau Ceti, Kapteyn, Gliese 581, Kepler 62, HD 85512, and many more. With so many Earth-like, potentially habitable planets in the near-universe and now within our reach, nothing seems to stand between us and the dream of an interstellar human race. Mission to find extra-terrestrial intelligence are even being plotted.

This is one prospect humanity both anticipates and fears. While it is clear that no sentient life exists within the local group of star systems, our exploration of the cosmos has just begun. And if our ongoing scientific surveys have proven anything, it is that the conditions for life exist within many star systems and on many worlds. No telling when we might find one that has produced life of comparable complexity to our own, but time will tell.

One can only imagine what they will look like. One can only imagine if they are more or less advanced than us. And most importantly, one can only hope that they will be friendly…

7. Post-Humanity:
artificial-intelligence1Cybernetics, biotechnology, and nanotechnology have led to an era of enhancement where virtually every human being has evolved beyond its biological limitations. Advanced medicine, digital sentience and cryonics have prolonged life indefinitely, and when someone is facing death, they can preserve their neural patterns or their brain for all time by simply uploading or placing it into stasis.

Both of these options have made deep-space exploration a reality. Preserved human beings launch themselves towards expoplanets, while the neural uploads of explorers spend decades or even centuries traveling between solar systems aboard tiny spaceships. Space penetrators are fired in all directions to telexplore the most distant worlds, with the information being beamed back to Earth via quantum communications.

It is an age of posts – post-scarcity, post-mortality, and post-humansim. Despite the existence of two billion organics who have minimal enhancement, there appears to be no stopping the trend. And with the breakneck pace at which life moves around them, it is expected that the unenhanced – “organics” as they are often known – will migrate outward to Europa, Ganymede, Titan, Oberon, and the many space habitats that dot the outer Solar System.

Presumably, they will mount their own space exploration in the coming decades to find new homes abroad in interstellar space, where their kind can expect not to be swept aside by the unstoppable tide of progress.

8. Star Children:
nanomachineryEarth is no more. The Sun is now a mottled, of its old self. Surrounding by many layers of computronium, our parent star has gone from being the source of all light and energy in our solar system to the energy source that powers the giant Dyson Swarm at the center of our universe. Within this giant Matrioshka Brain, trillions of human minds live out an existence as quantum-state neural patterns, living indefinitely in simulated realities.

Within the outer Solar System and beyond lie billions more, enhanced trans and post-humans who have opted for an “Earthly” existence amongst the planets and stars. However, life seems somewhat limited out in those parts, very rustic compared to the infinite bandwidth and computational power of inner Solar System. And with this strange dichotomy upon them, the human race suspects that it might have solved the Fermi Paradox.

If other sentient life can be expected to have followed a similar pattern of technological development as the human race, then surely they too have evolved to the point where the majority of their species lives in Dyson Swarms around their parent Sun. Venturing beyond holds little appeal, as it means moving away from the source of bandwidth and becoming isolated. Hopefully, enough of them are adventurous enough to meet humanity partway…

_____

Which will come true? Who’s to say? Whether its apocalyptic destruction or runaway technological evolution, cataclysmic change is expected and could very well threaten our existence. Personally, I’m hoping for something in the scenario 5 and/or 6 range. It would be nice to know that both humanity and the world it originated from will survive the coming centuries!

Immortality Inc: Google’s Kurzweil Talks Life Extension

calico-header-640x353Human life expectancy has been gradually getting longer and longer over the past century, keeping pace with advances made in health and medical technologies. And in the next 20 years, as the pace of technological change accelerates significantly, we can expect life-expectancy to undergo a similarly accelerated increase. So its only natural that one of the worlds biggest tech giants (Google) would decide to becoming invested in the business of post-mortality.

As part of this initiative, Google has been seeking to build a computer that can think like a human brain. They even hired renowed futurist and AI expert Ray Kurzweil last year to act as the director of engineering on this project. Speaking at Google’s I/O conference late last month, he detailed his prediction that our ability to improve human health is beginning to move up an “exponential” growth curve, similar to the law of accelerating returns that governs the information technology and communications sectors today.

raykurzweilThe capacity to sequence DNA, which is dropping rapidly in cost and ease, is the most obvious example. At one time, it took about seven years to sequence 1% of the first human genome. But now, it can be done in a matter of hours. And thanks to initiatives like the Human Genome Project and ENCODE, we have not only successfully mapped every inch of the human genome, we’ve also identified the function of every gene within.

But as Kurzweil said in the course of his presentation – entitled “Biologically Inspired Models of Intelligence” – simply reading DNA is only the beginning:

Our ability to reprogram this outdated software is growing exponentially. Somewhere between that 10- and 20-year mark, we’ll see see significant differences in life expectancy–not just infant life expectancy, but your remaining life expectancy. The models that are used by life insurance companies sort of continue the linear progress we’ve made before health and medicine was an information technology… This is going to go into high gear.

immortality_dnaKurzweil cited several examples of our increasing ability to “reprogram this outdated data” – technologies like RNA interference that can turn genes on and off, or doctors’ ability to now add a missing gene to patients with a terminal disease called pulmonary hypertension. He cited the case of a girl whose life was threatened by a damaged wind pipe, who had a new pipe designed and 3-D printed for her using her own stem cells.

In other countries, he notes, heart attack survivors who have lasting heart damage can now get a rejuvenated heart from reprogrammed stem cells. And while this procedure awaits approval from the FDA in the US, it has already been demonstrated to be both safe and effective. Beyond tweaking human biology through DNA/RNA reprogramming, there are also countless initiatives aimed at creating biomonitoring patches that will improve the functionality and longevity of human organs.

avatar_imageAnd in addition to building computer brains, Google itself is also in the business of extending human life. This project, called Calico, hopes to slow the process of natural aging, a related though different goal than extending life expectancy with treatment for disease. Though of course, the term “immortality” is perhaps a bit of misnomer, hence why it is amended with the word “clinical”. While the natural effects of aging are something that can be addressed, there will still be countless ways to die.

As Kurzweil himself put it:

Life expectancy is a statistical phenomenon. You could still be hit by the proverbial bus tomorrow. Of course, we’re working on that here at Google also, with self-driving cars.

Good one, Kurzweil! Of course, there are plenty of skeptics who question the validity of these assertions, and challenge the notion of clinical immortality on ethical grounds. After all, our planet currently plays host to some 7 billion people, and another 2 to 3 billion are expected to be added before we reach the halfway mark of this century. And with cures for diseases like HIV and cancer already showing promise, we may already be looking at a severe drop in mortality in the coming decades.

calico1Combined with an extension in life-expectancy, who knows how this will effect life and society as we know it? But one thing is for certain: the study of life has become tantamount to a study of information. And much like computational technology, this information can be manipulated, resulting in greater performance and returns. So at this point, regardless of whether or not it should be done, it’s an almost foregone conclusion that it will be done.

After all? While very few people would dare to live forever, there is virtually no one who wouldn’t want to live a little longer. And in the meantime, if you’ve got the time and feel like some “light veiwing”, be sure to check out Kurzweil’s full Google I/O 2014 speech in which he addresses the topics of computing, artificial intelligence, biology and clinical immortality:


Sources: fastcoexist.com, kurzweilai.net

Accelerando: A Review

posthumanIt’s been a long while since I did a book review, mainly because I’ve been immersed in my writing. But sooner or later, you have to return to the source, right? As usual, I’ve been reading books that I hope will help me expand my horizons and become a better writer. And with that in mind, I thought I’d finally review a book I finished reading some months ago, one which was I read in the hopes of learning my craft.

It’s called Accelerando, one of Charle’s Stross better known works that earned him the Hugo, Campbell, Clarke, and British Science Fiction Association Awards. The book contains nine short stories, all of which were originally published as novellas and novelettes in Azimov’s Science Fiction. Each one revolves around the Mancx family, looking at three generations that live before, during, and after the technological singularity.

https://i0.wp.com/1a3kls1q8u5etu6z53sktyqdif.wpengine.netdna-cdn.com/wp-content/uploads/2011/06/Charles-Stross.jpgThis is the central focus of the story – and Stross’ particular obsession – which he explores in serious depth. The title, which in Italian means “speeding up” and is used as a tempo marking in musical notation, refers to the accelerating rate of technological progress and its impact on humanity. Beginning in the 21st century with the character of Manfred Mancx, a “venture altruist”; moving to his daughter Amber in the mid 21st century; the story culminates with Sirhan al-Khurasani, Amber’s son in the late 21st century and distant future.

In the course of all that, the story looks at such high-minded concepts as nanotechnology, utility fogs, clinical immortality, Matrioshka Brains, extra-terrestrials, FTL, Dyson Spheres and Dyson Swarms, and the Fermi Paradox. It also takes a long-view of emerging technologies and predicts where they will take us down the road.

And to quote Cory Doctorw’s own review of the book, it essentially “Makes hallucinogens obsolete.”

Plot Synopsis:
http://upload.wikimedia.org/wikipedia/en/0/0b/Accelerando_%28book_cover%29.jpg
Part I, Slow Takeoff, begins with the short story “Lobsters“, which opens in early-21st century Amsterdam. Here, we see Manfred Macx, a “venture altruist”, going about his business, making business ideas happen for others and promoting development. In the course of things, Manfred receives a call on a courier-delivered phone from entities claiming to be a net-based AI working through a KGB website, seeking his help on how to defect.

Eventually, he discovers the callers are actually uploaded brain-scans of the California spiny lobster looking to escape from humanity’s interference. This leads Macx to team up with his friend, entrepreneur Bob Franklin, who is looking for an AI to crew his nascent spacefaring project—the building of a self-replicating factory complex from cometary material.

In the course of securing them passage aboard Franklin’s ship, a new legal precedent is established that will help define the rights of future AIs and uploaded minds. Meanwhile, Macx’s ex-fiancee Pamela pursues him, seeking to get him to declare his assets as part of her job with the IRS and her disdain for her husband’s post-scarcity economic outlook. Eventually, she catches up to him and forces him to impregnate and marry her in an attempt to control him.

The second story, “Troubador“, takes place three years later where Manfred is in the middle of an acrimonious divorce with Pamela who is once again seeking to force him to declare his assets. Their daughter, Amber, is frozen as a newly fertilized embryo and Pamela wants to raise her in a way that would be consistent with her religious beliefs and not Manfred’s extropian views. Meanwhile, he is working on three new schemes and looking for help to make them a reality.

These include a workable state-centralized planning apparatus that can interface with external market systems, a way to upload the entirety of the 20th century’s out-of-copyright film and music to the net. He meets up with Annette again – a woman working for Arianspace, a French commercial aerospace company – and the two begin a relationship. With her help, his schemes come together perfectly and he is able to thwart his wife and her lawyers. However, their daughter Amber is then defrosted and born, and henceforth is being raised by Pamela.

The third and final story in Part I is “Tourist“, which takes place five years later in Edinburgh. During this story, Manfred is mugged and his memories (stored in a series of Turing-compatible cyberware) are stolen. The criminal tries to use Manfred’s memories and glasses to make some money, but is horrified when he learns all of his plans are being made available free of charge. This forces Annabelle to go out and find the man who did it and cut a deal to get his memories back.

Meanwhile, the Lobsters are thriving in colonies situated at the L5 point, and on a comet in the asteroid belt. Along with the Jet Propulsion Laboratory and the ESA, they have picked up encrypted signals from outside the solar system. Bob Franklin, now dead, is personality-reconstructed in the Franklin Collective. Manfred, his memories recovered, moves to further expand the rights of non-human intelligences while Aineko begins to study and decode the alien signals.

http://garethstack.files.wordpress.com/2006/12/url-3.jpegPart II, Point of Inflection, opens a decade later in the early/mid-21st century and centers on Amber Macx, now a teen-ager, in the outer Solar System. The first story, entitled “Halo“, centers around Amber’s plot (with Annette and Manfred’s help) to break free from her domineering mother by enslaving herself via s Yemeni shell corporation and enlisting aboard a Franklin-Collective owned spacecraft that is mining materials from Amalthea, Jupiter’s fourth moon.

To retain control of her daughter, Pamela petitions an imam named Sadeq to travel to Amalthea to issue an Islamic legal judgment against Amber. Amber manages to thwart this by setting up her own empire on a small, privately owned asteroid, thus making herself sovereign over an actual state. In the meantime, the alien signals have been decoded, and a physical journey to an alien “router” beyond the Solar System is planned.

In the second story Router“, the uploaded personalities of Amber and 62 of her peers travel to a brown dwarf star named Hyundai +4904/-56 to find the alien router. Traveling aboard the Field Circus, a tiny spacecraft made of computronium and propelled by a Jupiter-based laser and a lightsail, the virtualized crew are contacted by aliens.

Known as “The Wunch”, these sentients occupy virtual bodies based on Lobster patterns that were “borrowed” from Manfred’s original transmissions. After opening up negotiations for technology, Amber and her friends realize the Wunch are just a group of thieving, third-rate “barbarians” who have taken over in the wake of another species transcending thanks to a technological singularity. After thwarting The Wunch, Amber and a few others make the decision to travel deep into the router’s wormhole network.

In the third story, Nightfall“, the router explorers find themselves trapped by yet more malign aliens in a variety of virtual spaces. In time, they realize the virtual reaities are being hosted by a Matrioshka brain – a megastructure built around a star (similar to a Dyson’s Sphere) composed of computronium. The builders of this brain seem to have disappeared (or been destroyed by their own creations), leaving an anarchy ruled by sentient, viral corporations and scavengers who attempt to use newcomers as currency.

With Aineko’s help, the crew finally escapes by offering passage to a “rogue alien corporation” (a “pyramid scheme crossed with a 419 scam”), represented by a giant virtual slug. This alien personality opens a powered route out, and the crew begins the journey back home after many decades of being away.

https://storiesbywilliams.files.wordpress.com/2014/06/d622e-charles_stross_accelerando_magyar.jpgPart III, Singularity, things take place back in the Solar System from the point of view of Sirhan – the son of the physical Amber and Sadeq who stayed behind. In “Curator“, the crew of the Field Circus comes home to find that the inner planets of the Solar System have been disassembled to build a Matrioshka brain similar to the one they encountered through the router. They arrive at Saturn, which is where normal humans now reside, and come to a floating habitat in Saturn’s upper atmosphere being run by Sirhan.

The crew upload their virtual states into new bodies, and find that they are all now bankrupt and unable to compete with the new Economics 2.0 model practised by the posthuman intelligences of the inner system. Manfred, Pamela, and Annette are present in various forms and realize Sirhan has summoned them all to this place. Meanwhile, Bailiffs—sentient enforcement constructs—arrive to “repossess” Amber and Aineko, but a scheme is hatched whereby the Slug is introduced to Economics 2.0, which keeps both constructs very busy.

In “Elector“, we see Amber, Annette, Manfred and Gianna (Manfred’s old political colleague) in the increasingly-populated Saturnian floating cities and working on a political campaign to finance a scheme to escape the predations of the “Vile Offspring” – the sentient minds that inhabit the inner Solar System’s Matrioshka brain. With Amber in charge of this “Accelerationista” party, they plan to journey once more to the router network. She loses the election to the stay-at-home “conservationista” faction, but once more the Lobsters step in to help by offering passage to uploads on their large ships if the humans agree to act as explorers and mappers.

In the third and final chapter, “Survivor“, things fast-forward to a few centuries after the singularity. The router has once again been reached by the human ship and humanity now lives in space habitats throughout the Galaxy. While some continue in the ongoing exploration of space, others (copies of various people) live in habitats around Hyundai and other stars, raising children and keeping all past versions of themselves and others archived.

Meanwhile, Manfred and Annette reconcile their differences and realize they were being manipulated all along. Aineko, who was becoming increasingly intelligent throughout the decades, was apparently pushing Manfred to fulfill his schemes to help bring the humanity to the alien node and help humanity escape the fate of other civilizations that were consumed by their own technological progress.

Summary:
Needless to say, this book was one big tome of big ideas, and could be mind-bendingly weird and inaccessible at times! I’m thankful I came to it when I did, because no one should attempt to read this until they’ve had sufficient priming by studying all the key concepts involved. For instance, don’t even think about touching this book unless you’re familiar with the notion of the Technological Singularity. Beyond that, be sure to familiarize yourself with things like utility fogs, Dyson Spheres, computronium, nanotechnology, and the basics of space travel.

You know what, let’s just say you shouldn’t be allowed to read this book until you’ve first tackled writers like Ray Kurzweil, William Gibson, Arthur C. Clarke, Alastair Reynolds and Neal Stephenson. Maybe Vernon Vinge too, who I’m currently working on. But assuming you can wrap your mind around the things presented therein, you will feel like you’ve digested something pretty elephantine and which is still pretty cutting edge a decade or more years after it was first published!

But to break it all down, the story is essentially a sort of cautionary tale of the dangers of the ever-increasing pace of change and advancement. At several points in the story, the drive toward extropianism and post-humanity is held up as both an inevitability and a fearful prospect. It’s also presented as a possible explanation for the Fermi Paradox – which states that if sentient life is statistically likely and plentiful in our universe, why has humanity not observed or encountered it?

According to Stross, it is because sentient species – which would all presumably have the capacity for technological advancement – will eventually be consumed by the explosion caused by ever-accelerating progress. This will inevitably lead to a situation where all matter can be converted into computing space, all thought and existence can be uploaded, and species will not want to venture away from their solar system because the bandwidth will be too weak. In a society built on computronium and endless time, instant communication and access will be tantamount to life itself.

All that being said, the inaccessibility can be tricky sometimes and can make the read feel like its a bit of a labor. And the twist at the ending did seem like it was a little contrived and out of left field. It certainly made sense in the context of the story, but to think that a robotic cat that was progressively getting smarter was the reason behind so much of the story’s dynamic – both in terms of the characters and the larger plot – seemed sudden and farfetched.

And in reality, the story was more about the technical aspects and deeper philosophical questions than anything about the characters themselves. As such, anyone who enjoys character-driven stories should probably stay away from it. But for people who enjoy plot-driven tales that are very dense and loaded with cool technical stuff (which describes me pretty well!), this is definitely a must-read.

Now if you will excuse me, I’m off to finish Vernor Vinge’s Rainbow’s End, another dense, sometimes inaccessible read!

Tweeting Aliens: The Lone Signal Array

gliese-581-eIn what could be called a case of serious repurposing – beating swords into plowshares and so forth – or something out of science-fiction, a crowdfunded project has sought to turn a Cold War era dish into a deep-space communications array. This array will send messages to that’s relatively near to us, and potentially inhabited. And assuming anything sufficiently advanced lives there, we could be talking to them soon enough.

dishantennaThe project is known as Lone Signal, a crowdfunded effort to send a continuous stream of messages to the folks at Gliese 526, a red dwarf star 17.6 light-years away in the constellation of Bootes (aka Wolf 498). And the dish with which they intend to do this is known as the Jamesburg Earth Station, a nuke-proof satellite relay station in California that dates from the 1960s and even helped broadcast images of Neil Armstrong on the moon.

Long Signal, it should be noted, is the brainchild of The Blue Marble Space Institute of Science, non-profit virtual research institute that networks scientists from across the globe and multiple disciplines for the purpose of expanding the boundaries of knowledge, science and astronomy and promoting an open dialogue on the subject of exploration and settlement.Towards this end, they arranged for a 30-year lease on the Cold War-era dish (for a cool $3 million) and set up a project that will allow participants who contribute money to send a personalized message into space.

exoplanetsUltimately, they plan to direct two beams at Gliese 526: a continuous wave with fundamental physics laws and basic information about Earth, and another consisting of crowdsourced greetings. The project is open to anyone and a series of initial short message (the equivalent of a 144-character tweet) will be available free of charge. Subsequent messages, images, and longer greetings, however, will cost money (about $1 for four texts) that will help the project fund itself.

The project’s website also lets participants track their messages and share them via social media, dedicate messages to others, and view signal stats. In an interview with Universe Today, Lone Signal co-founder Pierre Fabre, told people:

Our scientific goals are to discover sentient beings outside of our solar system. But an important part of this project is to get people to look beyond themselves and their differences by thinking about what they would say to a different civilization. Lone Signal will allow people to do that.

Indeed. Nothing like the prospect of facing another life form, a potential space invader even, to make people forget about all their petty bickering!

Gliese_581_-_2010As our knowledge of the universe expands, we are becoming aware of the existence of more and more exoplanets. Many of these exist within the Habitable Zones of their parent star, which means two things. On the one hand, they may be candidates for potential settlement in the future. On the other, they may already be home to sentient life. If said life is sufficiently advanced, its entirely possible they could be looking back at us.

For some time, the human race has been contemplating First Contact with potential extra-terrestrial life, which was the very purpose behind the creation of NASA’s SETI (Search for Extra-Terrestrial Intelligence) program in 1961. The Pioneer space probes were another attempt at making contact, both of which carried small metal plaques identifying their time and place of origin for the benefit of any other spacefarers that might find them in the distant future.

SETIFollowing in that tradition, Voyager 1 and 2 space probes contained even more ambitious messages, otherwise known as the Golden Record. These phonograph records – two 12-inch gold-plated copper disks – contained both sounds and images selected to portray the diversity of life and culture on Earth that would give any civilization that found them a good idea of what the people of Earth were capable of.

The contents of the records were selected for NASA by a committee chaired by Carl Sagan of Cornell University, and consisted of 115 images and a variety of natural sounds – surf, wind, thunder, birds, whales, and other animals. To this they added musical selections from different cultures and eras, and spoken greetings from Earth-people in fifty-five languages, and printed messages from then-President Carter and U.N. Secretary General Waldheim.

golden_record_cover_smIn this respect, Lone Signal represents the latest step in promoting contact and communication with other life forms. And in keeping with the trend of modern space exploration, it is being opened to the public via crowdfunding and personalized messages. But unlike SETI, which lost its government funding in 1995 and had to turn to private supporters, crowdfunded space exploration is something directly accessible by all citizens, not just corporate financiers.

Update: The Lone Signal project is now operational and on 9:00 PM EDT Monday, June 17 at a press event in New York, the team announced the transmission of the first interstellar message. The message was sent by none other than Ray Kurzweil, noted Futurist and science guru. That message was then read during his welcome talk to the Singularity University class of 2013, from the Computer History Museum in Mountain View, California:

Greetings to Gliese 526 from Singularity University. As you receive this, our computers have made us smarter, the better to understand you and the wisdom of the universe.

What he means by this is that by the time the message is recieved – roughly 18 years from now, assuming it ever is – humanity is likely to have taken the first steps towards merging our brains with computers via biotech, artificial intelligence, or other means of computer-assisted brain augmentation. At least, that’s what guys like Kurzweil hope for.

Other “alpha beamers” — including Dan Aykroyd, Alicia Keys, and Jason Silva — also sent beams Monday night. And for the time being, anyone can send a “crowdsourced” 144-character beam and pic. Better get on it before they start charging. If texting and phone rates are any indication, the price is likely to go up as the plan improves!

And be sure to enjoy this promotional video from Lone Signal:


And also check out this time-lapse video of the Jamesburg Earth Station in operation:

Sources: cnet.news.com, universetoday.com, voyager.jpl.nasa.gov, bmsis.org, kurzweil.net

The Singularity: The End of Sci-Fi?

singularity.specrepThe coming Singularity… the threshold where we will essentially surpass all our current restrictions and embark on an uncertain future. For many, its something to be feared, while for others, its something regularly fantasized about. On the one hand, it could mean a future where things like shortages, scarcity, disease, hunger and even death are obsolete. But on the other, it could also mean the end of humanity as we know it.

As a friend of mine recently said, in reference to some of the recent technological breakthroughs: “Cell phones, prosthetics, artificial tissue…you sci-fi writers are going to run out of things to write about soon.” I had to admit he had a point. If and when he reach an age where all scientific breakthroughs that were once the province of speculative writing exist, what will be left to speculate about?

Singularity4To break it down, simply because I love to do so whenever possible, the concept borrows from the field of quantum physics, where the edge of black hole is described as a “quantum singularity”. It is at this point that all known physical laws, including time and space themselves, coalesce and become a state of oneness, turning all matter and energy into some kind of quantum soup. Nothing beyond this veil (also known as an Event Horizon) can be seen, for no means exist to detect anything.

The same principle holds true in this case, at least that’s the theory. Originally coined by mathematician John von Neumann in the mid-1950’s, the term served as a description for a phenomenon of technological acceleration causing an eventual unpredictable outcome in society. In describing it, he spoke of the “ever accelerating progress of technology and changes in the mode of human life, which gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue.”

exponential_growth_largeThe term was then popularized by science fiction writer Vernor Vinge (A Fire Upon the Deep, A Deepness in the Sky, Rainbows End) who argued that artificial intelligence, human biological enhancement, or brain-computer interfaces could be possible causes of the singularity. In more recent times, the same theme has been picked up by futurist Ray Kurzweil, the man who points to the accelerating rate of change throughout history, with special emphasis on the latter half of the 20th century.

In what Kurzweil described as the “Law of Accelerating Returns”, every major technological breakthrough was preceded by a period of exponential growth. In his writings, he claimed that whenever technology approaches a barrier, new technologies come along to surmount it. He also predicted paradigm shifts will become increasingly common, leading to “technological change so rapid and profound it represents a rupture in the fabric of human history”.

kurzweil-loglog-bigLooking into the deep past, one can see indications of what Kurzweil and others mean. Beginning in the Paleolithic Era, some 70,000 years ago, humanity began to spread out a small pocket in Africa and adopt the conventions we now associate with modern Homo sapiens – including language, music, tools, myths and rituals.

By the time of the “Paleolithic Revolution” – circa 50,000 – 40,000 years ago – we had spread to all corners of the Old World world and left evidence of continuous habitation through tools, cave paintings and burials. In addition, all other existing forms of hominids – such as Homo neanderthalensis and Denisovans – became extinct around the same time, leading many anthropologists to wonder if the presence of homo sapiens wasn’t the deciding factor in their disappearance.

Map-of-human-migrationsAnd then came another revolution, this one known as the “Neolithic” which occurred roughly 12,000 years ago. By this time, humanity had hunted countless species to extinction, had spread to the New World, and began turning to agriculture to maintain their current population levels. Thanks to the cultivation of grains and the domestication of animals, civilization emerged in three parts of the world – the Fertile Crescent, China and the Andes – independently and simultaneously.

All of this gave rise to more habits we take for granted in our modern world, namely written language, metal working, philosophy, astronomy, fine art, architecture, science, mining, slavery, conquest and warfare. Empires that spanned entire continents rose, epics were written, inventions and ideas forged that have stood the test of time. Henceforth, humanity would continue to grow, albeit with some minor setbacks along the way.

The_Meeting_of_Cortés_and_MontezumaAnd then by the 1500s, something truly immense happened. The hemispheres collided as Europeans, first in small droves, but then en masse, began to cross the ocean and made it home to tell others what they found. What followed was an unprecedented period of expansion, conquest, genocide and slavery. But out of that, a global age was also born, with empires and trade networks spanning the entire planet.

Hold onto your hats, because this is where things really start to pick up. Thanks to the collision of hemispheres, all the corn, tomatoes, avocados, beans, potatoes, gold, silver, chocolate, and vanilla led to a period of unprecedented growth in Europe, leading to the Renaissance, Scientific Revolution, and the Enlightenment. And of course, these revolutions in thought and culture were followed by political revolutions shortly thereafter.

IndustrialRevolutionBy the 1700’s, another revolution began, this one involving industry and creation of a capitalist economy. Much like the two that preceded it, it was to have a profound and permanent effect on human history. Coal and steam technology gave rise to modern transportation, cities grew, international travel became as extensive as international trade, and every aspect of society became “rationalized”.

By the 20th century, the size and shape of the future really began to take shape, and many were scared. Humanity, that once tiny speck of organic matter in Africa, now covered the entire Earth and numbered over one and a half billion. And as the century rolled on, the unprecedented growth continued to accelerate. Within 100 years, humanity went from coal and diesel fuel to electrical power and nuclear reactors. We went from crossing the sea in steam ships to going to the moon in rockets.

massuseofinventionsAnd then, by the end of the 20th century, humanity once again experienced a revolution in the form of digital technology. By the time the “Information Revolution” had arrived, humanity had reached 6 billion people, was building hand held devices that were faster than computers that once occupied entire rooms, and exchanging more information in a single day than most peoples did in an entire century.

And now, we’ve reached an age where all the things we once fantasized about – colonizing the Solar System and beyond, telepathy, implants, nanomachines, quantum computing, cybernetics, artificial intelligence, and bionics – seem to be becoming more true every day. As such, futurists predictions, like how humans will one day merge their intelligence with machines or live forever in bionic bodies, don’t seem so farfetched. If anything, they seem kind of scary!

singularity-epocksThere’s no telling where it will go, and it seems like even the near future has become completely unpredictable. The Singularity looms! So really, if the future has become so opaque that accurate predictions are pretty much impossible to make, why bother? What’s more, will predictions become true as the writer is writing about them? Won’t that remove all incentive to write about it?

And really, if the future is to become so unbelievably weird and/or awesome that fact will take the place of fiction, will fantasy become effectively obsolete? Perhaps. So again, why bother? Well, I can think one reason. Because its fun! And because as long as I can, I will continue to! I can’t predict what course the future will take, but knowing that its uncertain and impending makes it extremely cool to think about. And since I’m never happy keeping my thoughts to myself, I shall try to write about it!

So here’s to the future! It’s always there, like the horizon. No one can tell what it will bring, but we do know that it will always be there. So let’s embrace it and enter into it together! We knew what we in for the moment we first woke up and embraced this thing known as humanity.

And for a lovely and detailed breakdown of the Singularity, as well as when and how it will come in the future, go to futuretimeline.net. And be prepared for a little light reading 😉

Big News in Quantum Science!

Welcome all to my 800th post! Woot woot! I couldn’t possibly think of anything to special to write about to mark the occasion, as I seem to acknowledge far too many of these occasions. So instead I thought I’d wait for a much bigger milestone which is on the way and simply do a regular article. Hope you enjoy it, it is the 800th one I’ve written 😉

*                    *                    *

C2012 saw quite a few technical developments and firsts being made; so many in fact that I had to dedicate two full posts to them! However, one story which didn’t make many news cycles, but may prove to be no less significant, was the  advances made in the field of quantum science. In fact, the strides made in this field during the past year were the first indication that a global, quantum internet might actually be possible.

For some time now, scientists and researchers have been toying with the concept of machinery that relies on quantum mechanics. Basically, the idea revolves around “quantum teleportation”, a process where quantum states of matter, rather than matter itself, are beamed from one location to another. Currently, this involves using a high-powered laser to fire entangled photons from one location to the next. When the photons at the receiving end take on the properties of the photon sent, a quantum teleportation has occurred, a process which is faster than the speed of light since matter is not actually moving, only its properties.

quantum-teleportation-star-trails-canary-islands-1-640x353Two years ago, scientists set the record for the longest teleportation by beaming a photon some 16 km. However, last year, a team of international researchers was able to beam the properties of a photon from their lab in La Palma to another lab in Tenerife, some 143 km away. Not only was this a new record, it was significant because 143 km happens to be just far enough to reach low Earth orbit satellites, thus proving that a world-spanning quantum network could be built.

Shortly thereafter, China struck back with its own advance, conducting the first teleportation of quantum states between two rubidium atoms. Naturally, atoms are several orders larger than a quantum qubit, which qualifies them as “macroscopic objects” – i.e. visible to the naked eye. This in turn has led many to believe that large quantities of information could be teleported from one location to the next using this technique in the near future.

And then came another breakthrough from England, where researchers managed to transmit qubits and binary data down the same piece of optic fiber, which laid the groundwork for a conventional internet that runs via optic cable instead of satellites, and which could be protected using quantum cryptography, a secured means of information transfer which remains (in theory) unbreakable.

quantum_compAnd finally, the companies of IBM and the University of Southern California (USC) reported big advances in the field of quantum computing during 2012. The year began with IBM announcing that it had created a 3-qubit computer chip (video below) capable of performing controlled logic functions. USC could only manage a 2-qubit chip — but it was fashioned out of diamond (pictured at left). Both advances strongly point to a future where your PC could be either completely quantum-based, or where you have a few quantum chips to aid with specific tasks.

As it stands, quantum computing, networking, and cryptography remain in the research and development phase. IBM’s current estimates place the completion of a fully-working quantum computer at roughly ten to fifteen years away. And as it stands, the machinery needed to conduct any of these processes remains large, bulky and very expensive. But miniaturization and a drop in prices are too things you can always count on in the tech world!

^So really, we may be looking at a worldwide, quantum internet by 2025 or 2030. We’re talking about a world in which information transfers faster than the speed of light, all connections are secure, and computing happens at unheard of speeds. Sounds impressive, but the real effect of this “quantum revolution” will be the exponential rate at which progress increases. With worldwide information sharing and computing happening so much faster, we can expect further advances in every field to take less time, and breakthroughs happening on a regular basis.

Yes, this technology could very well be the harbinger of what John von Neumann called the “Technological Singularity”. I know some of you might be feeling nervous at the moment, but somewhere, Ray Kurzweil is doing a happy dance! Just a few more decades before he and others like him can start downloading their brains or getting those long-awaited cybernetic enhancements!

Source: extremetech.com

The Milli-Motein: A “Real-Life Transfomer”?

DNA-molecule2It seems that the line which separates the biological world from the synthetic is growing fainter all the time. Just consider advancements made in the past year alone: In January, researchers at MIT created the world’s first medimachine. Then in September, researchers announced the development of an electronic implant that can dissolve completely inside your body, followed shortly thereafter by the creation of the first bionic hand. And then in November, amputee Zak Vawter climbed America’s tallest skyscraper with the world’s first neurally controlled prosthetic leg.

Now, researchers inspired by structural biochemistry are working to design shapeshifting robots that could, in theory, assume almost any form imaginable. That’s the idea behind MIT’s latest invention, the Milli-Motein: a highly adaptable, infinitely scalable machine that can assume almost any shape imaginable. MIT media labs describes the device as both the robotic equivalent of a Swiss Army Knife, and a “real-life transformer”.

milli-moteinBut, like many inventions these days, the inspiration comes from organic biology, specifically the protein structure. The building block of all life, proteins can assume an untold number of shapes to fulfill an organism’s various functions, and are the universal workforce to all of life. By combining that concept with the world of robotics, the MIT research team hopes to create a new breed of robot that can assume any shape to perform multiple functions, and the Milli-Motein is just the beginning.

According to research lead Neil Gershenfeld, this device represents the latest advance in what he describes as the “Digital Fabrication Revolution”. As he put it: “Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them.” Also known as “programmable matter” – or “smartmatter” – products made from this kind of material could not only change their shapes, but become new things altogether.

Naturally, this is a small step in that direction, but the eventual goal is nothing short of revolutionary. I can envision a future where people will actually line up to buy the new Acme “handy-dandy micro-helper”, a device which can convert from a screwdriver to a HDMI cord, a tablet, a fannypack, or a pair of shoes. Whatever you need, the micro-helper has you covered! Hey, that’d be a good slogan. I should start investigating patents now, don’t want Kurzweil and all those futurists making money off of this instead of me!

Check out the video below for footage of the Milli-Motein in action, and a brief description of the principles involved:


Source: IO9.com, MIT.edu

Of DIY Cybernetics and Biohacking

transhuman3It seems that biohackers and enthusiasts of body augmentation could be setting a new trend, and doing it all from the comfort of their basements. That’s the essence of an article filed by Neal Ungerleider this past September, in which he stated that biohackers have not only cloned the innovation strategies of Silicon Valley, but could also be reshaping how technology is being created.

Amongst their efforts are such things as brain interfaces that can control video games with human thoughts, Bluetooth sensors that are meant to go under the skin and send vital signs to mobile phones, tissue engineering that can create in vitro “steaks” and leather, and devices that convert brainwaves into actual speech. These efforts are collaborative in nature and connect numerous basements, labs and research facilities together to share research, resources, and breakthroughs.

Those who take an active part in this trend are often known as grinders or biohackers, people who have chosen not to wait for cybenetic enhancements and body augmentation to become commercially available and seek to create them on their own.

According to Ungerleider:

“West Coast biohackers and grinders were the pioneers of this tech-driven, California brand of utopianism… For biohackers everywhere, augmentation of humanity itself—whether through technology or more traditional methods—is the primary goal. Common conversation points include DIY cyborgs, the quantified self, and diet…

“But a growing community on the East Coast—in greater New York, Boston, and Pittsburgh—is synthesizing Silicon Valley’s entrepreneurial DNA for its unique innovation model. Experimentation and science here is not only an exercise in advancing humanity through tech but is often applied toward creating viable cybernetic products for the market.”

One such group is Biohackers NYC, a group that was formed in 2012 largely in response to all the innovation that was taking place on the opposite coast. In additi0n to the initial startup group, it was joined by numerous startups, incubators, and workspaces scattered across the outer boroughs. As group founder and psychiatrist Lydia Fazzio claimed in an interview back in September:

“Our intent was to cover the spectrum of biohacking from manipulating non-human genomes to also the body and the mind. It’s a holistic approach to the meaning of biohacking, whether technology or nutrition. However you get there, we all have the innate potential to be an optimal functioning human in society. Our question is: How do we get there?”

davinci_transhumanOne of the attractions of this new movement is that it allows the merger of skilled professionals and dedicated hobbyists a chance to collaborate on projects of mutual interest. It also takes advantage of new business and development models – i.e. crowdsourcing – which is made possible thanks to the digital revolution.

Already, message boards have sprung up that allow disparate “labs” to post information on their work and share with others who have similar interests and projects on the go. These include DIYbio, which deals with the larger field of DIY biotechnology labs; and biohack.me, where the possibilities of subdermal bone conduction headphones and echolocation implants are being contemplated.

TranshumanIn the end, this is really just a small part of a much larger movement, which takes on various names. On is transhumanism, a movement which believes that human limitations can and must be transcended with the help of technological innovation. Another is Singularitarianism, a movement popularized by such Futurists as Ray Kurzweil. These individuals believe that technology will (or has) reached the point where human beings can take control of their own mortality, abilities and evolution. While some are willing to wait, others are intent on making it happen sooner other than later.

Naturally, there is a great deal of skepticism towards this new trend. For one, there are countless people who believe it to be the stuff of “science fiction”, and not real science. But, as Ungerleider claims, this represents the culmination of trends that have been in the works for some time. What’s more, it represents the monetization and mass marketing of technologies which have been under development for many years. And in truth, the line between science fiction and science fact has always been a fine one. All that’s ever been needed for us to transcend it is for people to make it happen.

Sources: fastcompany.com, Wired.com, IO9.com

The Future is… Foggy!

utility_fogIt’s called a Utility Fog, swarms of networked microscopic robots that can assume the shape and texture of virtually anything. Originally proposed by J. Storrs Hall, a speculative science writer back in 1993, the concept has gone on to inspired futurists and science fiction writers for years. These include Warren Ellis’s foglets in Transmetropolitan and Neal Stephenson’s personal nanodefense systems in The Diamond Age, among others.

As an extension of the nanotechnological principle – where microscopic machines are able to self-replicate and construct just about anything – the Utility Fog idea goes a step further by proposing that we have a series of robots linked, arm and arm, to form a solid mass that can assume the shape of anything we need. Another term that is often used is “Smart Matter”, because it entails the creation of materials that are capable of responding to input, storing info, and thereby predicting what a users desires.

And since they are composed by tiny robots that could be capable of computing and networking with larger machines, they could even form interfaces that allow us to store information, send emails, or take pictures. Each “foglet” would function as its own discreet computer network, in this model, making sure that separate clouds are discernible and perform different tasks. The possibilities are truly limitless, and though it may be a few decades away at this point (by liberal estimates), we can only imagine how it will alter our daily lives.

During a recent interview with IO9, Hall reminisced about how he first came up with the idea:

“I came up with this vision of form fitting foam — one that could take on the shape of anything inside it and on the fly, which got me to wondering if we could ever possibly build something like that.”

The answer, according to Hall, came to him by considering the nascent field of molecular nanotechnology. By designing and creating objects at the molecular scale, Hall envisioned a fog that could quickly morph along with the movements of anything around it — including the passengers of cars. However, the greatest potential, to Hall lies in the creation of virtual environments. In truth, there could come a day when utility fogs will blend seamlessly with the real and virtual worlds, creating a kind of hybrid reality in between.

“You could actually push this technology to the point of creating a virtual world around you. You’d essentially get Star Trek’s holodeck — one that could actually cut you and make you bleed. You could put yourself in a virtual environment where you’re interacting with something that leads to a real environment, and it’s this interface between what’s real and virtual that will prove to be the most important thing about it.”

However, the most radical possibility could be in the field of clinical immortality. Amongst science fiction writers such as William Gibson, the idea that human beings could upload their minds into constructs and interfaces has been toyed with for some time. However, why upload your mind into a box or some kind of portable hard drive when you could render it seamlessly into the form of a fog?

“You could very realistically imagine uploading into it, and then you’d be this sort of formless data amoeba controlling this formless physical amoeba and take any size or form you wanted.”

Of course, there are limitation to the whole concept, not the least of which is the fact that the constituent components of the technology are still any decades away. For starters, there’s the ability to construct robots on the scale required, then the need to fashion computers that are small enough to fit. Then there’s the software required to program such machines. Hall figures that it could take a team of experts as much as a half decade to come up with the first set of algorithms required for the most basic functions.

“To navigate that hairy interface between the continuous and the discreet — that’s more difficult, the foglets will have to link up hands, let go, walk, crawl, and so forth — it’ll be like a three dimensional square dance.”

But above all, the main issue is one of cost:

“The system will have to be capable of keeping track of any changes to the environment and to keep track of you — and this will require incredibly sophisticated simulation, sensing, and interfacing software and that’s going to be tremendously expensive.”

Not surprising really. At this juncture in time, the greatest leaps in technology that will forever alter the future and make it impossible to predict – to a point anyway – are still highly speculative. But then again, major breakthroughs are being made all the time, and are occurring at a greater and greater pace. Who’s to say when the future will arrive. It never seems to show up on schedule!

Transhumanism… The Shape of Things to Come?

“Your mind is software. Program it. Your body is a shell. Change it. Death is a disease. Cure it. Extinction is approaching. Fight it.”

-Eclipse Phrase

A lot of terms are thrown around these days that allude to the possible shape of our future. Words like Technological Singularity, extropianism, postmortal, posthuman, and Transhuman. What do these words mean? What kind of future do they point to? Though they remain part of a school of thought that is still very much theoretical and speculative, this future appears to be becoming more likely every day.

Ultimately, the concept is pretty simple, in a complex, mind-bending sort of way. The theory has it that at some point in this or the next century, humanity will overcome death, scarcity, and all other limitations imposed on us by nature. The means vary, but it is believed that progress in any one or more of the following areas will make such a leap inevitable:

Artificial Intelligence:
The gradual evolution of computers, from punch cards to integrated circuits to networking, shows an exponential trend upwards. With the concordant growth of memory capacity and processing speed, it is believed that it is only a matter of time before computers are capable of independent reasoning. Progress is already being made in this domain, with the Google X Labs Neural Net that has a connectome of a billion connections.

As such, it is seen as inevitable that a machine will one day exist that is capable of surpassing a human being. This sort of machinery could even be merged with a human’s own mind, enhancing their natural thought patterns, memory, and augmenting their intelligence to the point where their intelligence is immeasurable by modern standards.

Just think of the things we could think up once that’s possible. Well… you can’t exactly, but we can certainly postulate. For starters, such things as the Grand Unifying Theory, the nature of time and space, quantum mechanics, and other mind-bendingly complex fields could suddenly make sense to us. What’s more, this would make further technological leaps that much easier.

Biology:
Here we have an area of development which can fall into one of three categories. On the one hand, advancements in medical science could very well lead to the elimination of disease and the creation of mind-altering pharmaceuticals. On the other, there’s the eventual development of things like biotechnology, machinery that is grown rather than built, composed of DNA strands or other “programmable” material.

Lastly, there is the potential for cybernetics, a man-machine interface where organic is merged with the artificial, either in the form of implants, prosthetic limbs, and artificial organs. All of these, alone or in combination, would enhance a human beings strength, mental capacity, and prolong their life.

This is the meaning behind the word postmortal. If human beings could live to the point where life could be considered indefinite (at least by current standards), the amount we could accomplish in a single lifetime could very well be immeasurable.

Nanotechnology:
The concept of machines so small that anything will be accessible, even the smallest components of matter, has been around for over half a century. However, it was not until the development of microcircuits and miniaturization that the concept graduated from pure speculation and became a scientific possibility.

Here again, the concept is simple, assuming you can wrap your head around the staggering technical aspects and implications. For starters, we are talking about machines that are measurable only on the nanoscale, meaning one to one-hundred billionths of a meter (1 x 10-9 m). At this size, these machines would be capable of manipulating matter at the cellular or even atomic level. This is where the staggering implications come in, when you realize that this kinds of machinery could make just about anything possible.

For starters, all forms of disease would be conquerable, precious metals could be synthesized, seamless, self-regenerating structures could be made, and any and all consumer products could be created out of base matter. We’d be living in a world in which scarcity would be a thing of the past, our current system of values and exchange would become meaningless, buildings could build themselves, and out of raw matter (like dirt and pure scrap) no less, societies would become garbage free, pollution could be eliminated, and manufactured goods could be made of materials that are both extra-light and near-indestructible.

Summary:
All of this progress, either alone or in combination, will add to a future that we can’t even begin to fathom. This is where the concept of the Technological Singularity comes in. If human beings were truly postmortal (evolved beyond death), society was postscarce (meaning food, water, fuel and other necessities would never be in short supply), and machines would be capable of handling all our basic needs.

For Futurists and self-professed Singularitarians, this trend is as desirable as it is inevitable. Citing such things as Moore’s Law (which measures the rate of computing progress) or Kurzweil’s Law of Accelerating Returns – which postulates that the rate of progress increases exponentially with each development – these voices claim that it is humanity’s destiny to conquer death and its inherent limitations. If one looks at the full range of human history – from the Neolithic Revolution to the Digital – the trend seems clear and obvious.

For others, this prospect is both frightening and something to be avoided. When it comes right down to it, transhumanity means leaving behind all the things that make us human. And whereas some people think the Singularity will solve all human problems, others see it as merely an extension of a trend whereby our lives become increasingly complicated and dependent on machinery. And supposing that we do cross some kind of existential barrier, will we ever be able to turn back?

And of course, the more dystopian predictions warn against the cataclysmic possibilities of entrusting so much of our lives to automata, or worse, intelligent machines. Virtually every apocalyptic and dystopian scenario devised in the last sixty years has predicted that doom will result from the development of AI, cybernetics and other advanced technology. The most technophobic claim that the machinery will turn on humanity, while the more moderate warn against increased dependency, since we will be all the more vulnerable if and when the technology fails.

Naturally, there are many who fall somewhere in between and question both outlooks. In recent decades, scientists and speculative fiction writers have emerged who challenge the idea that technological progress will automatically lead to the rise of dystopia. Citing the undeniable trend towards greater and greater levels of material prosperity caused by the industrial revolution and the post-war era – something which is often ignored by people who choose to emphasize the down sides – these voices believe that the future will be neither utopian or dystopian. It will simply be…

Where do you fall?