Terraforming Series Complete!

Terraforming Series Complete!

I’ve been busy over at Universe Today of late. In fact, as part of a promotional thing for my upcoming book – The Cronian Incident – I’ve been doing a series of articles about terraforming. And it’s actually kind of an interesting story, which I already touched on in a previous post. In any case, the series is now complete, with articles that cover everything from terraforming Mercury to terraforming the moons of the gas giants in the outer Solar System:

The Definitive Guide to Terraforming
How Do We Terraform Mercury?
How Do We Terraform Venus?
How Do We Terraform Mars?
How Do We Terraform the Moon?
How Do We Terraform Jupiter’s Moons?
How Do We Terraform Saturn’s Moons?

To give people the Cliff Notes version of this series, it is clear that at this point, humanity could colonize and terraform certain worlds in our Solar System. The only real questions are where could we? How could we? And why should we? To answer the first two, we could terraform Mars and Venus, since both planets are terrestrial (like Earth), both exist in our Sun’s habitable zone (like Earth), and have either abundant atmospheres or abundant sources of water we can work with. In any other case, the matter becomes impractical, except within certain contained environments (paraterraforming).

mars_greening
The “greening of Mars”. Credit: nationalgeographic.com

As for the third question – why should we? – that was one of the main reasons I tackled this subject. When it comes to terraforming, the questions concerning ethics and responsibility are unavoidable. And while I did my best to cover this in the course of writing the series, the real debate happened in the comments section. Again and again, people asked the following questions:

How can we live elsewhere when we can’t even take care of Earth?
Shouldn’t we take care of our problems here before we settle other worlds?
Wouldn’t those resources be better spent here?

All good (and predictable) questions. And rather than simply avoiding them or dismissing them as pedestrian, I wanted to seriously have an answer. And so I chose to reply whenever these questions, or some variation, popped up. Here’s the basics of why we should terraform other worlds in this century and the next:

1. Increased Odds of Survival:
As Elon Musk is rather fond of sharing, colonizing Mars was one of the main reasons he started SpaceX (which recently made their second successful landing of the reusable Falcon 9 rocket!) His reason for establishing this colony, he claims, is to create a “backup location” for humanity. And in this, he has the support of many policy analysts and space enthusiasts. Faced with the threat of possible extinction from multiple fronts – an asteroid, ecological collapse, nuclear war, etc. – humanity would have better odds of survival if it were a multi-planet species.

Artist's concept for a possible colony on Mars. Credit: Ville Ericsson
Artist’s concept for a possible colony on Mars. Credit: Ville Ericsson

What’s more, having other locations around the Solar System decreases the odds of us ruining Earth. So much of why Earth’s environment is threatened has to do with the impact human populations have on it. Currently, there are over 7 billion human beings living on planet Earth, with an additional 2 to 3 billion expected by mid-century, and between 10 and12 by the 2100. But it’s not just the number of people that matters. In addition to every human being constituting a mouth to feed, they are also a pair of hands that need to given something productive to do (lest they turn to something destructive).

Every human also requires an education, a place to live, and basic health and sanitation services to make sure they do not die prematurely. And providing for all of this requires space and a great deal of resources. As it stands, it is becoming more and more difficult to provide for those we have, and our ability to do so is dwindling (i.e. thanks to Climate Change). If we intend to survive as a species, we not only need new venues to expand to, we need other resource bases to ensure that our people can be fed, clothed, housed, and employed.

So simply put, creating permanent settlements on the Moon, Mars, and elsewhere in the Solar System could ensure that humanity survives, especially if (or when) our efforts to save Earth from ourselves fail.

Project Nomad, a concept for the 2013 Skyscraper Competition that involved mobile factory-skyscrapers terraforming Mars. Credit: evolo.com/A.A. Sainz/J.R. Nuñez/K.T. Rial
Project Nomad, a concept for the 2013 Skyscraper Competition that involved mobile factory-skyscrapers terraforming Mars. Credit: evolo.com/A.A. Sainz/J.R. Nuñez/K.T. Rial

2. Testing out Ecological and Geological Engineering Techniques:
Basically, there is no way humanity is going to be able to address Climate Change in this century if we do not get creative and start relying on techniques like carbon capture, carbon sequestration, solar shades, and artificially triggered global dimming and fungal blooms. The problem is, any or all of these techniques need to be tested in order to ensure that the results are just right. Altering our environment would not only threaten to disrupt systems human being depend upon for their livelihood, it could also threaten the lives of many people.

Such is the threat Climate Change poses, so we want to make sure the ways in which we address it helps the environment instead of screwing it up further. The best way to do that is to have testing grounds where we can try out these techniques, and where a misstep won’t result in the loss of innocent lives or billions in damages. Ergo, testing our methods on Mars and Venus will give us a chance to measure their effectiveness, while avoiding any of the political barriers and potential hazards using them on Earth would present.

3. Mars and Venus are Perfect Testing Grounds:
Astronomers have been aware for some time that Mars and Venus are similar to Earth in many ways. As previously mentioned, they are both terrestrial planets that are located in our Sun’s habitable zone. But of course, they are also different in several key respects. Whereas Mars’ atmosphere is very thin, it has no magnetosphere, and its surface is extremely cold and dry, Venus has an atmosphere that it extremely dense, hot enough to melt lead, and where sulfuric acid rains are common.

terraforming-mars2
Artist’s impression of a atmospheric generator on Mars. Credit: futurism.com

The reasons for this? Mars sits at the outer edge of the Sun’s habitable zone and receives less warmth. Combined with its eccentric orbit – and a lack of a protective magnetosphere that caused it to lose its atmosphere billions of years ago – this is what has led to it becoming the very cold and dry planet we are familiar with. Venus, sitting on the inner edge of the Sun’s habitable zone, suffered a runaway Greenhouse Effect early in its history, which caused it to become the extremely hot and hellish world it is today.

Terraforming Mars would therefore require that we thicken the atmosphere and warm it up. This means triggering a Greenhouse Effect by pumping lots of CO2 and nitrogen (probably in the form of ammonia) into its atmosphere and then converting them using cyanobacteria and other species of bacteria. So basically, to make Mars more Earth-like, we could build heavy industry there to pollute the hell out of the place – something we’ve been doing here on Earth for hundreds of years! – and then test out techniques designed to convert the atmosphere into something breathable. What we learn could then be applied here at home.

The same holds true for Venus. In order to terraform that world into something livable for humanity, the first challenge will be to arrest the runaway Greenhouse Effect there and convert the carbon dioxide/sulfur dioxide-rich atmosphere into one composed of nitrogen and oxygen gas. There are many ways to do this, and testing one or more of them out will yield crucial data for using similar techniques on Earth. In a nutshell, transforming Mars and Venus will help us save Earth.

Artist’s concept of a Venus cloud city – part of NASA’s High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center
Artist’s concept of a Venus cloud city – part of NASA’s High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center

4. Our Solar System has Abundant Resources:
Between the Moon, Mars, Venus, Mercury, the Asteroid Belt, and the systems of Jupiter, Saturn and beyond, there are literally enough resources to last humanity indefinitely. And while we can’t hope to possess them all at once, every step in colonizing the Solar System offers us the chance to expand our resource base, conduct scientific research and exploration, add more land which we can develop and use for human settlement, and ultimately grow as a species.

To break this process down piecemeal, we must start with the Moon. By establishing a colony in its southern polar region, we could leverage the local resources to create a permanent settlement and use it as a refueling base for mission deeper into the Solar System (a move which would save billions on all future missions). Solar operations could also be built on the surface to beam energy to Earth, the Moon’s rich minerals could be mined for Earth industries, and the mining of Helium-3 could power fusion reactors all over the world.

Already, NASA is eying the Shakelton Crater as a possible location, where there is an abundance of water ice and a dome could be built over it to create a contained atmosphere. The moon’s stable lava tunnels also present a good site, since they are large enough to fit entire cities within them and would hold an atmosphere nicely. And from there, humanity could mount missions to Venus and Mars, which would in turn add their abundant supplies of minerals to our economy.

The European Space Agency's concept for a Moon base. Credit: ESA
The European Space Agency’s concept for a Moon base. Credit: ESA

Mercury would also present a major opportunity for mining and solar operations.  And like the Moon, colonies could be built in the permanently shaded regions around the northern and southern polar regions (where there are abundant supplies of water ice) and in underground stable lava tubes. The Asteroid Belt literally has enough minerals and ices to keep humanity supplied indefinitely (hence the interest in asteroid prospecting of late), and the outer Solar System has enough ice, volatiles, and organic compounds to do the same.

In short, step by step, the colonization and/or terraforming of our Solar System offers humanity the opportunity to become a post-scarcity race. While many decry the idea of our species expanding because of the greed and abuse we have demonstrated in the past (and continue to demonstrate today), much of this greed and abuse comes from the fact that our current economic models are based on scarcity. By removing that from the equation, it would be that much more difficult for human beings to hoard resources for themselves while denying their neighbor.

Faced with all of this, the question no is longer one of “why should we”, but rather “why shouldn’t we?” Why shouldn’t we establish a human presence elsewhere in the Solar System, knowing that it could not only help us to save Earth, but ensure our survival as a species for the indefinite future? This of course does not address all the challenges that remain in doing so, but it does tackle one of the biggest arguments there is against space exploration and colonization.

Still pic from Wanderers, by Erik Wernquist
Still pic from Wanderers, by Erik Wernquist

As for the rest? Well, I’m sure we’ll tackle those questions, and then some, when the time comes. In the meantime, I encourage everyone to keep looking up at the stars and saying the question, “why not?”

The Cronian Incident – Factions in the Future

 

future_city
Future City [3] by josueperez79 at deviantart.com
Hi again folks! I’m back with some thoughts from my most recent story project – The Jovian Incident. I know, what else is new, right? Writing can be a self-indulgent process. But if there’s one thing I’ve learned, its that sharing helps when it comes to developing a story. It helps you articulate your thinking and ideas, especially if respected peers tell you what they think (hint, hint!)

As I also learned a long time ago, any science fiction piece that deals with the distant future has to take into account how human beings in the future go about organizing themselves. In this future world, what are the political blocs, the alliances, the rivalries – the ways in which people are united and divided? Well, I gave that a lot of thought before sitting down to pen the book (which is into chapter 11 now). And this is the basic breakdown I came up with.

Extro Factions:
For starters, people in the future I am envisioning are tentatively divided into those that live in the inner and outer Solar Systems. But that geographic divide is merely representative of a much bigger issue that divides humanity. Whereas the people living on Earth, Mars and Venus largely fall into the category of “Extro” (i.e. Extropian, people who embrace the transhuman ethic) people in the outer Solar System live simpler, less augmented and enhanced lives (“Retro”).

But within this crude division between people who believe in going beyond their biological limitations and those who believe in respecting them, there are plenty of different social, political and ideological groups to be found. Here’s a rundown on them, starting with the Extro factions…

The Formists:
Founded by Piter Chandrasekhar, one of the first colonists of Mars, the Formists are a faction dedicated to the full-scale terraforming of the Red Planet. The purpose of this, obviously, is to allow for full-scale colonization, which is something that remains impossible at this point in the story. All inhabitants on Mars lived in sealed domes, all transit takes place in pressurized tubes or on flyers, and anyone venturing out onto the surface is forced to wear a pressure suit with life-support systems.

Mars_terraforming
Mars Terraformed by Daein Ballard

Currently, the Formist faction is run by Emile Chandrasekhar, Piter’s grandson. And for the past few decades, they have been busy procuring resources from the outer Solar System to aid in the terraforming process. This includes supplies of methane, ammonia, ices, and lots and lots of comets.

However, they are also busy trying to ensure that the process will have a minimal impact on the settlements and those living within them. Altering the planet’s atmosphere will definitely have a significant impact on the landscape in the short-term, such as sublimating all the water ice in the Martian soil and in the polar caps. Once that water begins to flow, much of the surface will find itself being swallowed up by newly-created oceans. So naturally, the Formists must proceed slowly, and make sure all settlements on Mars agree to their plans.

While the Formist faction is largely centered on Mars, they have counterparts on Venus as well – known as The Graces (after the children of Aphrodite). Here, the process is significantly different, and involves converting the existing atmosphere rather than increasing its density. But the goal is the same: to one day make Venus a living, breathing world human beings can set foot on.

The Dysonists:
Among the Extros, there are also those who believe humanity’s future lies not in the stars or in the terraforming the Solar System’s planets, but in the space that surrounds our Sun. They are known as the Dysonists, a faction that is intent on building a massive swarm of structures in the inner Solar System. For some, this calls for a series of rings which house the inhabitants on their inner surface and provide gravity through endless rotation.

fractal_dyson_sphere_by_eburacum45-d2yum16
This artist’s concept of a Dyson sphere is via SentientDevelopments.com

For other, more ambitious Dysonists, the plan involves massive swarms of computronium that will contain a sea of uploaded personalities living in simulated environments. Both the swarms and the powerful bandwidth that connects them will draw energy from the Sun’s rays. These individuals consider themselves to be the more puritan of Dysonists, and believe those who advocate buildings rings structures are more properly known as Nivenists.

The process of converting all the “dumb matter” in the Solar System into smart matter has already begun, but in limited form. Within a few generations, it is believed that the Sun will be surrounded by a “Torus” of uploaded minds that will live on while countless generations come and go. Dysonists and their enclaves can be found on Near-Earth Asteroids, in the Main Asteroid Belt, and with committed supporters living on Venus, Mars, Earth, the Moon, and Ceres.

The Habitationists:
Inspired by Gerard K. O’Neill, the inventor of the O’Neill Cylinder, the Habitationists began as an architects dream that quickly expanded to fill all of known space. In the 21st century, Earthers looking to escape the growing population crisis began migrating to space. But rather than looking to live on distant worlds or the Moon, where the environment was harsh and the gravity limited, they decided to set up shop in orbit. Here, supplies could be shipped regularly, thanks to the advent of commercial aerospace, and gravity could be simulated at a full g thanks to rotating toruses.

By the mid 22nd century, Low Earth Orbit (LEO) Habs had become all the rage and the skies became somewhat saturated. The existence of Earth’s space elevator (The Spindle) only made deploying and supplying these Habs easier, and a steady drop in the costs of manufacturing and deploying them only made them more popular. As such, Terran architect Hassan Sarawak, who had designed many of the original habitats in space, began to busy himself designing a new series of Habs that would allow human beings to live in space anywhere in the Solar System.

Lightfarm Studios
Artistic impression of the inside of an O’Neil Cylinder. Lightfarm Studios

By the end of the 22nd century, when the story takes place, large cylinders exist in several key places in the Solar System. Most are named in honor of either their founders, those who articulated the concept of space habitats, or those who believed in the dream of colonizing space itself (and not just other planets and moons).  These places are thusly named O’Neil’s Reach, Clarkestown, Sawarakand, and New Standford.

The Seedlings:
As the name would suggest, the Seedlings are those intrepid Extropians who believe humanity should “seed” the galaxy with humanity, spreading to all solar systems that have confirmed exoplanets and building settlements there. But in a slight twist, they believe that this process should be done using the latest in nanotechnology and space penetrators, not slow interstellar ships ferrying human colonist and terraformers.

To the Seedlings, who can be found throughout the inner Solar System, and on some of its most distant moons, the idea is simple. Load up a tiny projectile-ship with billions of nanobots designed to slowly convert a planet’s climate, then fire it on a trajectory that will take it to an exoplanet many generations from now. Then, prepare a ship with colonists, send it on its merry way into space, and by the time they reach the distant world, it will be fully prepared for their arrival.

utility_fog
At this point in the story, the Seedlings first few missions are still in the planning stages. They’ve got the technology, they’ve got the know-how, and they know where the right candidate planets are located. All they need to do know is test out their machines and make sure the process works, so that they won’t be sending their colonists into a deathtrap.

Sidenote: this idea is actually one I explored in a short story I am trying to get published. If all goes well, I am the short story and this full-length idea can be connected as part of a singular narrative.

Retro Factions:
And now we come to the people who live predominantly in the outer Solar System, the folks who found life on Earth and the inner worlds unlivable thanks to its breakneck pace and the fact that life was becoming far too complicated. These are the people whom – for religious, personal, or moral reasons – chose to live on the frontier worlds in order to ensure something other than humanity’s survival as a species. For these people, it was about preserving humanity’s soul.

Organics:
In the mid to late 21st century, as biotech and cybernetics became an increasingly prevalent part of society, a divide began to emerge between people who enhanced their biology and neurology and those who did not. While the former were in the minority for the first few decades, by the latter half of the 21st century, more and more people began to become, in essence, “transhuman” – (i.e. more than human).

Cyber_Girl
Cyber Girl by Fausto De Martini

At the same time, fears and concerns began to emerge that humanity was forsaking the very things that made it human. With lives becoming artificially prolonged, human parts being swapped for bionic or biomimetic implants, and brains becoming enhanced with neural implants and “looms”, humanity seemed on course to becoming post-human (i.e. not human at all).

And while the concerns were justified, few who could afford such enhancements seemed to be willing to forsake the convenience and necessity they represented. In a world where they conferred advantage over the unenhanced, choosing not to augment one’s body and mind seemed foolish. But between those who could not afford to, those who were forbidden to, and those who chose not to, eventually a new underclass emerged – known as “Organics”.

Today’s organics, who live predominantly in the outer Solar System or isolated pockets in the inner worlds, are the descendants of these people. They live a simpler life, eschewing most of the current technology in favor for a more holistic existence, depending on various levels of technology to maintain a certain balance.

Fundies:
Naturally, human beings in the late 22nd century still have their faiths and creeds.  Despite what some said in previous centuries, mankind did not outgrow the need for religion as it began to explore space and colonizing new worlds. And when the Singularity took place in the mid 21st century, and life became increasingly complex, enhanced, and technologically-dominated, the world’s religiously-devout began to feel paradoxical. On the one hand, religion seemed to be getting more unpopular and obsolete; but at the same time, more rare and precious.

The-Common-Foundations-of-Religions-and-Theology-Evolutionary-Tree-of-Religions
To be fair, there was a time when it seemed as though the prediction of a religion-less humanity might come true. In the early to mid 21st century, organized religion was in a noticeable state of decline. Religious institutions found it harder and harder to adapt to the times, and the world’s devout appeared to be getting increasingly radicalized. However, in and around all of these observable trends, there were countless people who clung to their faith and their humanity because they feared where the future was taking them.

In the current era, the outer Solar System has become a haven for many sects and religious organizations that felt the Inner Worlds were too intolerant of their beliefs. While there will always be people who embrace one sort of faith or another on all worlds – for instance, billions of Extros identify as Gnosi or Monist – the majority of devout Kristos, Sindhus, Mahavadans, Mahomets, and Judahs now call the worlds of Ganymede, Callisto, Europa, Titan, Rhea, Iapetus, Dione, Tethys, Titania, Oberon, Ariel and Umbriel home.

The vast majority of these people want to live in peace. But for some, the encroachment of the Inner Worlds into the life and economies of their moons is something that must be stopped. They believe, as many do, that sooner or later, the Extro factions will try to overtake these worlds as well, and that they will either be forced to move farther out, colonizing the moons of Neptune and the Kuiper Belt, or find homes in new star systems entirely. As such, some are joining causes that are dedicated to pushing back against this intrusion…

Chauvians (Independents):
Many in the past also thought that nationalism, that sense of pride that is as divisive as it is unifying, would also have disappeared by this point in time. And while humanity did begin to celebrate a newfound sense of unity by the late 21st century, the colonizing of new worlds had the effect of creating new identities that were bound to a specific space and place. And given the divisive political climate that exists in the late 22nd century, it was only natural that many people in the Outer Worlds began preaching a form of independent nationalism in the hopes of rallying their people.

Révolution_de_1830_-_Combat_devant_l'hôtel_de_ville_-_28.07.1830
Collectively, such people are known as “Chauvians“, a slight bastardization of the word “Jovian” (which applies to inhabitants of any of the outer Solar System’s moons). But to others, they are known simply as Independents, people striving to ensure their worlds remain free of external control. And to those belonging to these factions, their worlds and their people are endangered and something must be done to stop the intrusion of Extros into the outer Solar System. For the most part, their methods are passive, informative, and strictly political. But for others, extra-legal means, even violent means, are seen as necessary.

Examples include the Children of Jove and the Aquilan Front, which are native to the Galilean moons of Jupiter. On the Cronian moons, the Centimanes are the main front agitating for action against the Extros. And on the Uranian moons, the organizations known as The Furies and the Sky Children are the forces to be reckoned with. Whereas the more-moderate of these factions are suspected of being behind numerous protests, riots, and organized strikes, the radicals are believed to be behind the disappearance of several Extro citizens who went missing in the Outer Worlds. In time, it is believed that a confrontation will occur between these groups and the local authorities, with everyone else being caught in the middle.


And those are the relevant players in this story I’m working out. Hope you like them, because a few come into play in the first story and the rest I think could become central to the plots of any future works in the same universe. Let me know what you think! 🙂

 

Birth of an Idea: Seedlings

alien-worldHey all! Hope this holidays season finds you warm, cozy, and surrounded by loved ones. And I thought I might take this opportunity to talk about an idea I’ve been working on. While I’m still searching for a proper title, the one I’ve got right now is Seedlings. This represents an idea which has been germinated in my mind for some time, ever since I saw a comprehensive map of the Solar System and learned just how many potentially habitable worlds there are out there.

Whenever we talk of colonization, planting the seed (you see where the title comes from now, yes?) of humanity on distant worlds, we tend to think of exoplanets. In other words, we generally predict that humanity will live on worlds beyond our Solar System, if and when such things ever become reality. Sure, allowances are made for Mars, and maybe Ganymede, in these scenarios, but we don’t seem to think of all the other moons we have in our Solar System.

solar_systemFor instance, did you know that in addition to our system’s 11 planets and planetoids, there are 166 moons in our Solar System, the majority of which (66) orbit Jupiter? And granted, while many are tiny little balls of rock that few people would ever want to live on, by my count, that still leaves 12 candidates for living. Especially when you consider that most have their own sources of water, even if it is in solid form.

And that’s where I began with the premise for Seedlings. The way I see it, in the distant future, humanity would expand to fill every corner of the Solar System before moving on to other stars. And in true human fashion, we would become divided along various geographic and ideological lines. In my story, its people’s attitudes towards technology that are central to this divide, with people falling into either the Seedling or Chartrist category.

nanomachineryThe Seedlings inhabit the Inner Solar System and are dedicated to embracing the accelerating nature of technology. As experts in nanotech and biotech, they establish new colonies by planting Seeds, tiny cultures of microscopic, programmed bacteria that convert the landscape into whatever they wish. Having converted Venus, Mars, and the Jovian satellites into livable worlds, they now enjoy an extremely advanced and high standard of living.

The Chartrists, on the other hand, are people committed to limiting the invasive and prescriptive nature technology has over our lives. They were formed at some point in the 21st century, when the Technological Singularity loomed, and signed a Charter whereby they swore not to embrace augmentation and nanotechnology beyond a certain point. While still technically advanced, they are limited compared to their Seedling cousins.

terraforming-mars2With life on Earth, Mars and Venus (colonized at this time) becoming increasingly complicated, the Chartrists began colonizing in the outer Solar System. Though they colonized around Jupiter, the Jovians eventualy became Seedling territory, leaving just the Saturnalian and Uranian moons for the Chartrists to colonize, with a small string of neutral planets lying in between.

While no open conflicts have ever taken place between the two sides, a sort of detente has settled in after many generations. The Solar System is now glutted by humans, and new frontiers are needed for expansion. Whereas the Seedlings have been sending missions to all suns within 20 light-years from Sol, many are looking to the Outer Solar System as a possible venue for expansion.

exoplanets1At the same time, the Chartrists see the Seedling expansion as a terrible threat to their ongoing way of life, and some are planning for an eventual conflict. How will this all play out? Well, I can tell you it will involve a lot of action and some serious social commentary! Anyway, here is the breakdown of the Solar Colonies, who owns them, and what they are dedicated to:

Inner Solar Colonies:
The home of the Seedlings, the most advanced and heavily populated worlds in the Solar System. Life here is characterized by rapid progress and augmentation through nanotechnology and biotechnology. Socially, they are ruled by a system of distributed power, or democratic anarchy, where all citizens are merged into the decision making process through neural networking.

Mercury: source of energy for the entire inner solar system
Venus: major agricultural center, leader in biomaterial construction
Earth: birthplace of humanity, administrative center
Mars: major population center, transit hub between inner colonies and Middle worlds

Middle Worlds:
A loose organization of worlds beyond Mars, including the Jovian and Saturnalian satellites. Those closest to the Sun are affiliated with the Seedlings, the outer ones the Chartrists, and with some undeclared in the middle. Life on these worlds is mixed, with the Jovian satellites boasting advanced technology, augmentation, and major industries supplying the Inner Colonies. The Saturnalian worlds are divided, with the neutral planets boasting a high level of technical advancement and servicing people on all sides. The two Chartrist moons are characterized by more traditional settlements, with thriving industry and a commitment to simpler living.

Ceres: commercial nexus of the Asteroid Belt, source of materials for solar system (S)
Europa: oceanic planet, major resort and luxury living locale (S)
Ganymede: terraforming operation, agricultural world (S)
Io: major source of energy for the Middle World (N)
Calisto: mining operations, ice, water, minerals (N)
Titan: major population center, transit point to inner colonies (N)
Tethys: oceanic world, shallow seas, major tourist destination (N)
Dione: major mining colony to outer colonies (C)
Rhea: agricultural center for outer colonies (C)

Outer Solar Colonies:
The Neptunian moons of the outer Solar System are exclusively populated by Chartrist populations, people committed to a simpler way of life and dedicated to ensuring that augmentation and rapid progress are limited. Settlements on these worlds boast a fair degree of technical advancement, but are significantly outmatched by the Seedlings. They also boast a fair degree of industry and remain tied to the Inner and Middle Worlds through the export of raw materials and the import of technical devices.

Miranda: small ice planet, source of water (C)
Ariel: agricultural world, small biomaterial industry and carbon manufacturing (C)
Umbriel: agricultural world, small biomaterial industry and carbon manufacturing (C)
Titania: agricultural world, small biomaterial industry and carbon manufacturing (C)
Oberon: agricultural world, small biomaterial industry and carbon manufacturing (C)
Triton: source of elemental nitrogen, water, chaotic landscape (C)

Timeline of the Future…

hyperspace4I love to study this thing we call “the future”, and began to do so as a hobby the day I made the decision to become a sci-fi writer. And if there’s anything I’ve learned, its that the future is an intangible thing, a slippery beast we try to catch by the tail at any given moment that is constantly receding before us. And when predict it, we are saying more about the time in which we are living than anything that has yet to occur.

As William Gibson famously said: “…science fiction was always about the period in which it was written.” At every juncture in our history, what we perceive as being the future changes based on what’s going on at the time. And always, people love to bring up what has been predicted in the past and either fault or reward the authors for either “getting it right” or missing the mark.

BrightFutureThis would probably leave many people wondering what the point of it all is. Why not just wait and let the future tend to itself? Because it’s fun, that’s why! And as a science fiction writer, its an indispensable exercise. Hell, I’d argue its absolutely essential to society as a whole. As a friend of one once said, “science fiction is more of a vehicle than a genre.” The point is to make observations about society, life, history, and the rest.

And sometimes, just sometimes, predictive writers get it right. And lately, I’ve been inspired by sources like Future Timeline to take a look at the kinds of predictions I began making when I started writing and revising them. Not only have times changed and forced me to revise my own predictions, but my research into what makes humanity tick and what we’re up to has come a long way.

So here’s my own prediction tree, looking at the next few centuries and whats likely to happen…

21st Century:

2013-2050:

  • Ongoing recession in world economy, the United States ceases to be the greatest economic power
  • China, India, Russia and Brazil boast highest rates of growth despite continued rates of poverty
  • Oil prices spike due to disappearance of peak oil and costs of extracting tar sands
  • Solar power, wind, tidal power growing in use, slowly replacing fossil fuel and coal
  • First arcologies finished in China, Japan, Russia, India and the United States

arcology_lillypad

  • Humanity begins colonizing the Moon and mounts manned mission to Mars
  • Settlements constructed using native soil and 3D printing/sintering technology
  • NASA tows asteroid to near Earth and begins studies, leading to plans for asteroid mining
  • Population grows to 9 billion, with over 6 living in major cities across the all five continents
  • Climate Change leading to extensive drought and famine, as well as coastal storms, flooding and fires
  • Cybernetics, nanotech and biotech leading to the elimination of disabilities
  • 3D Construction and Computer-Assisted Design create inexpensive housing in developing world

europa_report

  • First exploratory mission to Europa mounted, discovers proof of basic life forms under the surface ice
  • Rome ordains first openly homosexual priests, an extremely controversial move that splits the church
  • First semi-sentient, Turing compatible AI’s are produced and put into service
  • Thin, transparent, flexible medical patches leading to age of “digital medicine”
  • Religious orders formed opposed to “augmentation”, “transhumanism” and androids
  • First true quantum computers roll off the assembly line

quantum-teleportation-star-trails-canary-islands-1-640x353

  • Creation of the worldwide quantum internet underway
  • Quantum cryptography leads to increased security, spamming and hacking begins to drop
  • Flexible, transparent smartphones, PDAs and tablets become the norm
  • Fully immersive VR environments now available for recreational, commercial and educational use
  • Carbon dioxide in the upper atmosphere passes 600 ppm, efforts to curb emissions are redoubled
  • ISS is retired, replaced by multiple space stations servicing space shuttles and commercial firms
  • World’s first orbital colony created with a population of 400 people

2050-2100:

  • Global economy enters “Second Renaissance” as AI, nanomachinery, quantum computing, and clean energy lead to explosion in construction and development
  • Commercial space travel become a major growth industry with regular trips to the Moon
  • Implant technology removes the need for digital devices, technology now embeddable
  • Medical implants leading to elimination of neurological disorders and injuries
  • Synthetic food becoming the rage, 3D printers offering balanced nutrition with sustainability

3dfood2

  • Canada, Russia, Argentina, and Brazil become leading exporters of foodstuffs, fresh water and natural gas
  • Colonies on the Moon and Mars expand, new settlement missions plotted to Ganymede, Europa, Oberon and Titan
  • Quantum internet expanding into space with quantum satellites, allowing off-world connectivity to worldwide web
  • Self-sufficient buildings with water recycling, carbon capture and clean energy becomes the norm in all major cities
  • Second and third generation “Martians” and “Loonies” are born, giving rise to colonial identity

asteroid_foundry

  • Asteroid Belt becomes greatest source of minerals, robotic foundries use sintering to create manufactured products
  • Europe experiences record number of cold winters due to disruption of the Gulf Stream
  • Missions mounted to extra-Solar systems using telexploration probes and space penetrators
  • Average life expectancy now exceeds 100, healthy children expected to live to 120 years of age
  • NASA, ESA, CNSA, RFSA, and ISRO begin mounting missions to exoplanets using robot ships and antimatter engines
  • Private missions to exoplanets with cryogenically frozen volunteers and crowdfunded spaceships

daedalus_starship_630px

  • Severe refugee crises take place in South America, Southern Europe and South-East Asia
  • Militarized borders and sea lanes trigger multiple humanitarian crises
  • India and Pakistan go to war over Indus River as food shortages mount
  • China clamps down on separatists in western provinces of Xinjian and Tibet to protect source of the Yangtze and Yellow River
  • Biotechnology begins to grow, firms using bacteria to assemble structural materials

geminoid

  • Fully sentient AIs created and integrated into all aspects of life
  • Traditionalist communities form, people seeking to disconnect from modern world and eschew enhancement
  • Digital constructs become available, making neurological downloads available
  • Nanotech research leading to machinery and materials assembled at the atomic level
  • Traditional classrooms giving way to “virtual classrooms”, on-demand education by AI instructors
  • Medical science, augmentation, pharmaceuticals and uploads lead to the first generation of human “Immortals”

space_debris

  • Orbital colonies gives way to Orbital Nexus, with hundreds of habitats being established
  • Global population surpasses 12 billion despite widespread famine and displacement
  • Solar, wind, tidal, and fusion power replace oil and coal as the dominant power source worldwide
  • Census data shows half of world residents now have implants or augmentation of some kind
  • Research into the Alcubierre Drive begins to bear experimental results

alcubierre-warp-drive-overview22nd Century:

2100-2150:

  • Climate Change and global population begin to level off
  • First “Neural Collective” created, volunteers upload their thought patterns into matrix with others
  • Transhumanism becomes established religion, espousing the concept of transcendence
  • Widespread use of implants and augmentation leads to creation of new underclass called “organics”
  • Solar power industry in the Middle East and North Africa leading to growth in local economies
  • Biotech leads to growth of “glucose economy”, South American and Sub-Saharan economies leading in manufacture of biomaterials
  • Population in Solar Colonies and Orbital Nexus reaches 100,000 and continues to grow

asteroid_belt1

  • Off-world industry continues to grow as Asteroid Belt and colonies provide the majority of Earth’s mineral needs
  • Famine now widespread on all five continents, internalized food production in urban spaces continues
  • UN gives way to UNE, United Nations of Earth, which has near-universal representation
  • First test of Alcubierre FTL Drive successful, missions to neighboring systems planned
  • Tensions begin to mount in Solar Colonies as pressure mounts to produce more agricultural goods
  • Extinction rate of wild animals begins to drop off, efforts at ecological restoration continue
  • First attempts to creating world religion are mounted, met with limited success

networked_minds

  • Governments in most developed countries transitioning to “democratic anarchy”
  • Political process and involvement becoming digitized as representation becomes obsolete
  • “Super-sentience” emerges as people merge their neural patterns with each other or AIs
  • Law reformed to recognize neural constructs and AIs as individuals, entitled to legal rights
  • Biotech research merges with AI and nanotech to create first organic buildings with integrated intelligence

2150-2200:

  • Majority of the world’s population live in arcologies and self-sufficient environments
  • Census reveals over three quarters of world lives with implants or augmentation of some kind
  • Population of Orbital Nexus, off-world settlements surpasses 1 million
  • First traditionalist mission goes into space, seeking world insulated from rapid change and development
  • Labor tensions and off-world riots lead to creation of Solar policing force with mandate to “keep the peace”

Vladivostok-class_Frigate

  • First mission to extra=Solar planets arrive, robots begin surveying surface of Gliese 581 g, Gliese 667C c, HD 85512 b, HD 40307 g, Gliese 163 c, Tau Ceti e, Tau Ceti f
  • Deep space missions planned and executed with Alcubierre Drive to distant worlds
  • 1st Wave using relativistic engines and 2nd Wave using Alcubierre Drives meet up and begin colonizing exoplanets
  • Neighboring star systems within 25 light years begin to be explored
  • Terraforming begins on Mars, Venus and Europa using programmed strains of bacteria, nanobots, robots and satellites
  • Space Elevator and Slingatron built on the Moon, used to transport people to space and send goods to the surface

space_elevator_lunar1

  • Earth’s ecology begins to recover
  • Natural species are reintroduced through cloning and habitat recovery
  • Last reported famine on record, food production begins to move beyond urban farms
  • Colonies within 50 light years are established on Gliese 163 c, Gliese 581 g, Gliese 667C c, HD 85512 b, HD 40307 g, Tau Ceti e, Tau Ceti f
  • Off-world population reaches 5 million and continues to grow
  • Tensions between Earth and Solar Colonies continue, lead to demands for interplanetary governing body
  • Living, breathing cities become the norm on all settled worlds, entire communities build of integrated organic materials run by AIs and maintained by programmed DNA and machinery

self-aware-colony

23rd Century and Beyond:

Who the hell knows?

*Note: Predictions and dates are subject to revision based on ongoing developments and the author’s imagination. Not to be taken literally, and definitely open to input and suggestions.

New Space: “Sail Rover” to Explore Mercury

zephyr-580x435In addition to their ongoing plans to explore Mars for signs of life, the Jovian moon of Europa, and tow an asteroid closer to Earth, NASA also has plans to explore the surface of Venus. For decades, scientists have been yearning to get a closer look at this world’s pockmarked surface, but the volcanic activity, clouds of sulfuric acid and extreme heat are not exactly favorable to robotic rovers.

But according to NASA’s Innovative Advanced Concepts program, a windsailing rover could be just the means through which the hellish surface environment could be surveyed. This rover, nicknamed Zephyr, would use the high speeds and hot temperatures of Venus to its advantage, deploying a sail after entering the atmosphere and sailing to the ground.

mercury_surfaceThe rover would not be able to move around the surface, but would have electronics inside that are able to withstand the temperatures of 450 degrees Celsius (840 degrees Fahrenheit). Whenever the science team wanted to move some distance, however, they would deploy another sail that could use the wind to transport it across the surface. But mainly, the rover would remain on the ground conducting surface analysis.

Geoffrey Landis, who is with NASA’s Glenn Research Center and a part of the project to develop Zephyr, has long been an advocate of exploring Venus. This has included using solar powered airplane to explore the atmosphere, and colonizing the planet with floating cities. On the subject of Zephyr, he stated that:

A sail rover would be extraordinary for Venus. The sail has only two moving parts-just to set the sail and set the steering position-and that doesn’t require a lot of power. There’s no power required to actually drive. The fundamental elements of a rover for Venus are not beyond the bounds of physics. We could survive the furnace of Venus if we can come up with an innovative concept for a rover that can move on extremely low power levels.

venus_terraformedIn addition to providing volumes of information on the planet’s, exploring the surface of Venus could yield some interesting clues as to how it came to look like something out of Dante’s Inferno. It has been suggested that at one time, Venus may have boasted an atmosphere and surface water similar to Earth’s, but was transformed into a toxic nightmare thanks to a runaway Greenhouse Effect.

Studying how this came to happen would go a long way to helping scientists understand Climate Change here on Earth, and as well as give them the chance to test out possible solutions. And of course, any working solutions might go a long way towards terraforming Venus itself, which is something many scientists are currently advocating since it might be cheaper and less time consuming than transforming Mars.

Then again, if the resources and budget are there, there’s no reason why we can’t try to retool both for human settlement. After all, we might not have much a choice in the coming centuries. Human beings aren’t exactly known for their slow population growth or conservation skills!

Source: universetoday.com

Mercury Mapped for the First Time

mercury_mapMercury is the smallest planet in the Solar System and has the closest proximity to our sun. As a result, it’s one of the most neglected when it comes to scientific study. While Mars, Venus, Jupiter and Saturn have been probed and photographed in exquisite detail during the space age, the closest planet to the Sun has had to make do with a few flybys from the Mariner 10 spacecraft in the early 1970s.

However, that is now changing thanks to NASA’s Messenger spacecraft. In addition to confirming the existence of ice and organic molecules back in November, the probe has also transmitted thousands of images of the planet over the past year. These have allowed NASA personnel to construct the first high-resolution maps of the planet, its own high-resolution maps, down to the scale of kilometers.

Global Map Of Mercury From Messenger.According to David Blewett, a scientist at the Applied Physics Laboratory at Johns Hopkins University and part of the Messenger team, part of the reason it has taken more than 30 years to revisit the planet since the Mariner 10 flybys was because a lack of public interest. Messenger, he claims, has changed all that. Speaking ahead of a briefing on Friday at the annual meeting of the American Association for the Advancement of Science in Boston, Blewett had this say:

“Messenger has revealed Mercury to be a fascinating, dynamic and complex world. We know now that it is an oddball planet. It’s the smallest of the eight planets but has the highest density. The interior structure is different than the other planets. The geologic surface is different to the moon and Mars. The surface composition is enigmatic because … it consists of rock types that we don’t have much experience with. It has a global, Earth-like magnetic field, Venus and Mars do not.”

messenger_mercuryThe new global map is an enhanced image that shows the different compositions of rocks on the surface of Mercury by color-coding them. The more orange areas are volcanic plains while the make-up of the rocks in the deep blue areas is unknown. Though Messenger was able to detect an abundance of individual elements on Mercury’s surface – including iron, titanium, sulphur and potassium – without rock samples to study, scientists cannot determine the exact compounds or minerals in which those elements are arranged.

But the biggest surprise came on the surface, where there was an abundance of relatively volatile elements such as potassium and sulphur was seen to be very high. Most of the models for the formation of Mercury predict that these elements should have evaporated away during the planet’s formation. So in addition to learning more about its surface features, scientists are now presented with the opportunity to study and learn more about the planet’s early history as well.

But of course, much of that information and research are going to have to wait for future generations of Rovers. These are likely to be similar in nature to Curiosity, in that they are remote controlled, networked robots with internal labs. But unlike those currently combing the Red Planet, these ones will have to be able to withstand surface temperatures in excess of 400 C and some dangerous surface activity. Hard to know exactly when NASA will be rolling any of those out, but the simplest answer is, not too bloody soon!

Check out the video of Mercury’s new color map as it rotates to show its fully-detailed surface. And FYI, this bit of breaking news has become my 900th post! Woohoo!

Source: gaurdian.co.uk

Volcanoes on Venus?

venus_terraformIn spite of the challenges posed in studying the planet Venus – see dense clouds of sulfuric acid and surface temperatures in excess of 480 degrees C – scientists have learned quite a bit in recent years from orbiting spacecraft about the planets atmosphere and surface.

For example, the European Space Agency’s Venus Express made an interesting discovery that made the news recently. In short, since its arrivals in 2006, it detected has a sharp decline in atmospheric sulfur dioxide (SO2) concentrations, which followed in the wake of a spike in SO2 concentrations.

The most plausible explanation for this, according to Emmanuel Marcq, is a volcanic eruption, caught in the act. Marcq is the lead author on the report detailing this occurrence, which appeared in a recent issue of Nature Geoscience. A volcano is not the only possibly, he admits. “We know that on Earth there are long-term atmospheric cycles,” he says. “So it could happen on Venus as well. We can’t dismiss this possibility at the moment.”

Venus_Maat_MonsBut of course, volcanoes are much more likely. Not only are they the a known source of SO2 (at least on Earth), the surface of Venus is also peppered with volcanoes and its surface is marked by extensive volcanic activity. Most of these are extinct, but evidence obtained over the past few decades have indicated that there may be some that are still active.

For example, back in the early 1980’s Pioneer Venus documented SO2 levels nearly 50 times higher than anyone expected, followed by a steady dramatic decline. Then in the early 1990’s, the Magellan spacecraft detected what appeared to be fresh lava. “It’s very similar to the one we’re observing now,” said Marcq.

Naturally, this sort of activity is one of the things that makes Venus such a rosy place to live! In addition to the runaway Greenhouse Effect that has turned its atmosphere into the carbon choked, acidic stuff of death, its surface is prone to recurring lava flows and hot magma. Naturally, it will be quite the feat to land a satellite on the surface to conduct research in the same way that we currently do Mars. And as for terraforming, which has also been proposed, that too will be quite the challenge!