Judgement Day Update: Geminoid Robotic Clones

geminoidWe all know it’s coming: the day when machines would be indistinguishable from human beings. And with a robot that is capable of imitating human body language and facial expressions, it seems we are that much closer to realizing it. It’s known as the Geminoid HI-2, a robotic clone of its maker, famed Japanese roboticist Hiroshi Ishiguro.

Ishiguro unveiled his latest creation at this year’s Global Future 2045 conference, an annual get-together for all sorts of cybernetics enthusiasts, life extension researchers, and singularity proponents. As one of the world’s top experts on human-mimicking robots, Ishiguro wants his creations to be as close to human as possible.

avatar_imageAlas, this has been difficult, since human beings tend to fidget and experience involuntary tics and movements. But that’s precisely what his latest bot excels at. Though it still requires a remote controller, the Ishiguro clone has all his idiosyncrasies hard-wired into his frame, and can even give you dirty looks.

geminoidfThis is not the first robot Ishiguro has built, as his female androids Repliee Q1Expo and Geminoid F will attest. But above all, Ishiguro loves to make robotic versions of himself, since one of his chief aims with robotics is to make human proxies. As he said during his talk, “Thanks to my android, when I have two meetings I can be in two places simultaneously.” I honestly think he was only half-joking!

During the presentation, Ishiguro’s robotic clone was on stage with him, where it realistically fidgeted as he pontificated and joked with the audience. The Geminoid was controlled from off-stage, where an unseen technician guided it, and fidgeted, yawned, and made annoyed facial expressions. At the end of the talk, Ishiguro’s clone suddenly jumped to life and told a joke that startled the crowd.

geminoid_uncanny_valleyIn Ishiguro’s eyes, robotic clones can outperform humans at basic human behaviors thanks to modern engineering. And though they are not yet to the point where the term “android” can be applied, he believes it is only a matter of time before they can rival and surpass the real thing. Roboticists and futurists refer to this as the “uncanny valley” – that strange, off-putting feeling people get when robots begin to increasingly resemble humans. If said valley was a physical place, I think we can all agree that Ishiguro would be its damn mayor!

And judging by these latest creations, the time when robots are indistinguishable from humans may be coming sooner than we think. As you can see from the photos, there seems to be very little difference in appearance between his robots and their human counterparts. And those who viewed them live have attested to them being surprisingly life-like. And once they are able to control themselves and have an artificial neural net that can rival a human one in terms of complexity, we can expect them to mimic many of our other idiosyncrasies as well.

As usual, there are those who will respond to this news with anticipation and those who respond with trepidation. Where do you fall? Maybe these videos from the conference of Ishiguro’s inventions in action will help you make up your mind:

Ishiguro Clone:


Geminoid F:

Sources: fastcoexist.com, geminoid.jp

The Singularity: The End of Sci-Fi?

singularity.specrepThe coming Singularity… the threshold where we will essentially surpass all our current restrictions and embark on an uncertain future. For many, its something to be feared, while for others, its something regularly fantasized about. On the one hand, it could mean a future where things like shortages, scarcity, disease, hunger and even death are obsolete. But on the other, it could also mean the end of humanity as we know it.

As a friend of mine recently said, in reference to some of the recent technological breakthroughs: “Cell phones, prosthetics, artificial tissue…you sci-fi writers are going to run out of things to write about soon.” I had to admit he had a point. If and when he reach an age where all scientific breakthroughs that were once the province of speculative writing exist, what will be left to speculate about?

Singularity4To break it down, simply because I love to do so whenever possible, the concept borrows from the field of quantum physics, where the edge of black hole is described as a “quantum singularity”. It is at this point that all known physical laws, including time and space themselves, coalesce and become a state of oneness, turning all matter and energy into some kind of quantum soup. Nothing beyond this veil (also known as an Event Horizon) can be seen, for no means exist to detect anything.

The same principle holds true in this case, at least that’s the theory. Originally coined by mathematician John von Neumann in the mid-1950’s, the term served as a description for a phenomenon of technological acceleration causing an eventual unpredictable outcome in society. In describing it, he spoke of the “ever accelerating progress of technology and changes in the mode of human life, which gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue.”

exponential_growth_largeThe term was then popularized by science fiction writer Vernor Vinge (A Fire Upon the Deep, A Deepness in the Sky, Rainbows End) who argued that artificial intelligence, human biological enhancement, or brain-computer interfaces could be possible causes of the singularity. In more recent times, the same theme has been picked up by futurist Ray Kurzweil, the man who points to the accelerating rate of change throughout history, with special emphasis on the latter half of the 20th century.

In what Kurzweil described as the “Law of Accelerating Returns”, every major technological breakthrough was preceded by a period of exponential growth. In his writings, he claimed that whenever technology approaches a barrier, new technologies come along to surmount it. He also predicted paradigm shifts will become increasingly common, leading to “technological change so rapid and profound it represents a rupture in the fabric of human history”.

kurzweil-loglog-bigLooking into the deep past, one can see indications of what Kurzweil and others mean. Beginning in the Paleolithic Era, some 70,000 years ago, humanity began to spread out a small pocket in Africa and adopt the conventions we now associate with modern Homo sapiens – including language, music, tools, myths and rituals.

By the time of the “Paleolithic Revolution” – circa 50,000 – 40,000 years ago – we had spread to all corners of the Old World world and left evidence of continuous habitation through tools, cave paintings and burials. In addition, all other existing forms of hominids – such as Homo neanderthalensis and Denisovans – became extinct around the same time, leading many anthropologists to wonder if the presence of homo sapiens wasn’t the deciding factor in their disappearance.

Map-of-human-migrationsAnd then came another revolution, this one known as the “Neolithic” which occurred roughly 12,000 years ago. By this time, humanity had hunted countless species to extinction, had spread to the New World, and began turning to agriculture to maintain their current population levels. Thanks to the cultivation of grains and the domestication of animals, civilization emerged in three parts of the world – the Fertile Crescent, China and the Andes – independently and simultaneously.

All of this gave rise to more habits we take for granted in our modern world, namely written language, metal working, philosophy, astronomy, fine art, architecture, science, mining, slavery, conquest and warfare. Empires that spanned entire continents rose, epics were written, inventions and ideas forged that have stood the test of time. Henceforth, humanity would continue to grow, albeit with some minor setbacks along the way.

The_Meeting_of_Cortés_and_MontezumaAnd then by the 1500s, something truly immense happened. The hemispheres collided as Europeans, first in small droves, but then en masse, began to cross the ocean and made it home to tell others what they found. What followed was an unprecedented period of expansion, conquest, genocide and slavery. But out of that, a global age was also born, with empires and trade networks spanning the entire planet.

Hold onto your hats, because this is where things really start to pick up. Thanks to the collision of hemispheres, all the corn, tomatoes, avocados, beans, potatoes, gold, silver, chocolate, and vanilla led to a period of unprecedented growth in Europe, leading to the Renaissance, Scientific Revolution, and the Enlightenment. And of course, these revolutions in thought and culture were followed by political revolutions shortly thereafter.

IndustrialRevolutionBy the 1700’s, another revolution began, this one involving industry and creation of a capitalist economy. Much like the two that preceded it, it was to have a profound and permanent effect on human history. Coal and steam technology gave rise to modern transportation, cities grew, international travel became as extensive as international trade, and every aspect of society became “rationalized”.

By the 20th century, the size and shape of the future really began to take shape, and many were scared. Humanity, that once tiny speck of organic matter in Africa, now covered the entire Earth and numbered over one and a half billion. And as the century rolled on, the unprecedented growth continued to accelerate. Within 100 years, humanity went from coal and diesel fuel to electrical power and nuclear reactors. We went from crossing the sea in steam ships to going to the moon in rockets.

massuseofinventionsAnd then, by the end of the 20th century, humanity once again experienced a revolution in the form of digital technology. By the time the “Information Revolution” had arrived, humanity had reached 6 billion people, was building hand held devices that were faster than computers that once occupied entire rooms, and exchanging more information in a single day than most peoples did in an entire century.

And now, we’ve reached an age where all the things we once fantasized about – colonizing the Solar System and beyond, telepathy, implants, nanomachines, quantum computing, cybernetics, artificial intelligence, and bionics – seem to be becoming more true every day. As such, futurists predictions, like how humans will one day merge their intelligence with machines or live forever in bionic bodies, don’t seem so farfetched. If anything, they seem kind of scary!

singularity-epocksThere’s no telling where it will go, and it seems like even the near future has become completely unpredictable. The Singularity looms! So really, if the future has become so opaque that accurate predictions are pretty much impossible to make, why bother? What’s more, will predictions become true as the writer is writing about them? Won’t that remove all incentive to write about it?

And really, if the future is to become so unbelievably weird and/or awesome that fact will take the place of fiction, will fantasy become effectively obsolete? Perhaps. So again, why bother? Well, I can think one reason. Because its fun! And because as long as I can, I will continue to! I can’t predict what course the future will take, but knowing that its uncertain and impending makes it extremely cool to think about. And since I’m never happy keeping my thoughts to myself, I shall try to write about it!

So here’s to the future! It’s always there, like the horizon. No one can tell what it will bring, but we do know that it will always be there. So let’s embrace it and enter into it together! We knew what we in for the moment we first woke up and embraced this thing known as humanity.

And for a lovely and detailed breakdown of the Singularity, as well as when and how it will come in the future, go to futuretimeline.net. And be prepared for a little light reading 😉

Top Stories of 2012

biotech_alienAs Dec. 31st fast approaches, I find myself thinking about New Years resolutions. And part of that is taking stock on what’s been accomplished in the past year. For me, one of those resolutions was to stay current and share all the new and exciting news from the field of science and tech all my followers people; to the best of my abilities, that is.

In keeping with this, I wanted to create a list of the most important developments of the last year. Many sites have produced a top 10, top 12, even a top 7, list of what they thought the most significant accomplishments were. Well, I wanted to do one of my own! Opinion varies as to what the biggest leaps and bounds were over the course of the last year, and I’ll be damned if I don’t get my say in. Lord knows I’ve spent enough time reading about them, so here’s my comprehensive list of the greatest inventions, developments and advances made during 2012.

I think you’ll all agree, the list packed with stories that are intriguing, awe-inspiring, and even a little scary! Here are the top 12, as selected by me, in alphabetical order:

3D Printing:
cartilage1As far as tech trends go, this one has been in the works for some time. However, 2012 will be remembered as the year that 3D printing truly became a reality. From tree-dimensional models to consumer products to even guns, 3D printers have been featured in the news many times over for their potential and frightening abilities.

However, one of the greatest potential uses will be in the field of artificial cartilage, organs, and even food. As the technology is refined and expands to the field of organic molecules, just about anything can and will be synthesized, leading to an era where scarcity is… well, scarce!

Bionic Implants:
mindcontrolledprostheticPerhaps the years biggest achievement came in the form of bionic prosthetics, artificial limbs which are calibrated to respond to the nerve impulses of the user. As a result, amputees, veterans and accident victims are able to receive artificial limbs that act like the real thing.

The most notable case was Zak Vawter who scaled the 103 flights of Chicago’s Willis Tower using an artificial leg. In addition, two men in Britain had their sight restored after undergoing the first ever case of retinal surgery where bionic implants were placed in their eyes.

Brain Implants:
digital-mind1In September of 2012, scientists grafted an implant onto the brain of Chimpanzee, enhancing its brain power by ten percent. This consisted of an electrode array that was attached to the cerebral cortex of several monkey subjects, researchers were able to restore and even improve their decision-making abilities.

The implications for possible therapies is far-reaching, such as with brain injuries and cognitive disorders. But additionally, it also heralds the beginning of an era where human beings will be able to enhance their intelligence, recall, and memory retention.

Commercial Space Flight:
skylonThough not yet fully realized, 2012 was a big year in terms of commercial space flight. For example, Richard Branson and Virgin Galactic announced the first successful fully-loaded “glide test” of SpaceShipTwo, the rocket craft that will be taking passengers into low orbit as soon as all the kinks are worked out of the design.

In addition, Reaction Engines announced a breakthrough with the design of their hypersonic engine, which they claim will be fitted to their proposed spaceship – the Skylon. Capable of achieving speeds of up to Mach 5, this new craft is expected to be able to take off from conventional airfields, propel itself into low orbit, and deliver supplies to the ISS and make commercial trips around the world. No telling when either company will be conducting its first real suborbital flights, but the clock is ticking down!

Curiosity Rover:
Curiosity_selfportrait
One of the years biggest announcement was the deployment of the Curiosity Rover on the Martian surface. Since it landed, the rover has provided a constant stream of scientific updates and news on the Red Planet. Though the Mars Science Team did not find the “earthshaking” proof organic molecules, it did make a number of important discoveries.

Amongst them was solid evidence that Mars was once home to large rivers and bodies of water. Furthermore, the x-ray lab on board the rover conducted studies on several rock and soil samples, determining what the chemical and mineral composition of Mars surface is.

Faster-Than-Light Travel:
alcubierre-warp-drive-overviewIn the course of speaking at the 100 Year Starship, scientists at NASA began working on the first FTL travel system ever. Long considered to be the stuff of science fiction, physicist Harold White announced that not only is the math sound, but that his team at NASA had actually started working on it.

Relying on the concept of the Alcubierre Drive, the system involves expanding and contracting space time around the ship, allowing it to move faster than the speed of light without violating the Law of Relativity.

Geo-engineering:
converted PNM file
In October, the world’s first – and illegal – act of geo-engineering took place off Canada’s West Coast. The product of a “rogue geohacker” named Russ George, who was backed by a private company, the project involved the dumping of around 100 tonnes of oron sulphate into the Pacific Ocean. This technique, known as ocean fertilization, was meant to stimulate the growth of algae which metabolize carbon and produce oxygen.

The experiment, which is in violation of two United Nations moratoria, outraged many environmental, legal, and civic groups, many of whom hail from Haida Gwaii, the traditional territory of the Haida nation, who had enlisted by George as part of a proposed “salmon enhancement project”. Though illegal and abortive, the act was the first in what may very well become a series of geoengineering efforts which will be performed the world over in order to stay the progress of Climate Change.

Google’s Project Glass:
google_glasses2012 was also the year that augmented reality became… well, a reality (oh dear, another bad pun). Back in April, Google unveiled its latest concept device for wireless and portable computing, known as Project Glass. Combining an active display matrix, a wireless internet connection and a pair of shades, Google managed to create a device that looks like something straight out of cyberpunk novel.

HIV and Flu Vaccines:
HIV-budding-ColorWhen it comes to diseases, HIV and the Flu have two things in common. Until 2012, both were considered incurable, but sometime in the near future, both could be entirely preventable. In what could be the greatest medical breakthroughs in history, 2012 saw scientists and researchers experiment with antibodies that have been known to fight off HIV and the flu, and to good effect.

In the former case, this involved using a new process known as Vectored ImmunoProphylaxis (VIP), an inversion of the traditional vaccination method, where antibodies were introduced to mice. After allowing the antibodies to reproduce, researchers at Caltec found that the mice were able to fight off large quantities of the virus. In the latter, researchers at the Friedrich-Loeffler Institute in Riems Island, Germany used a new RNA-based vaccine that appeared to be able to fight off multiple strains of flu, not just the latest mutation.

Taken together, these vaccines could bring an end to a common, but potentially deadly ailment, and signal the end of the plague of the 20th century. In addition, this could be the first in a long series of developments which effectively brings all known diseases under our control.

Medical Implants:
enhancement2012 also saw the culmination of several breakthroughs in terms of biomedical research. In addition to the world’s first medimachine, there were also breakthroughs in terms of dissolving electronics, subdermal implants that dispense drugs, and health monitoring patches.

Little wonder then that Cambridge University announced the creation of the Center for the Study of Existential Risk to evaluate future technologies, or that Human Rights Watch and Harvard University teamed up to release a report calling for the ban of “killer robots”. With all the potential for enhancement, it could be just a matter of time before non-medical enhancements are a reality.

Mind-controlled prostheses:
woman-robotic-arm_650x366Researchers at BrainGate created a brain-machine interface that allows users to control an external device with their minds. The first person to use this revolutionary new system was Cathy Hutchinson, a stroke victim who has been paralyzed from the neck down for 15 years, who used the robotic arm to drink a cup of coffee.

This news, combined with other advances in terms of bionic prostheses, could signal the end of disability as we know it. Henceforth, people with severe injuries, amputations and strokes could find themselves able to make full recoveries, albeit through the use of robotic limbs.

Self-driving cars:
googlecar2012 marked an important year as three states (California, Nevada, and Florida) made autonomous vehicles legal. Self-driving cars, once perfected and produced en masse, will help with traffic congestion and significantly reduce the chance of auto accidents through the use of GPS, radar, and other technologies.

*               *               *

All in all, it’s been an exciting year. And with all that’s been accomplished, the future is certainly looking a lot more interesting and even frightening. What is clear is that predictions made for some time now are becoming realizable, including replication, a cure for all known diseases, advanced robotics, implants, cybernetics, and even post-humanism. Regardless of where one sits on these developments, be you pro, con, or neutral, I think we can all agree that it is an exciting time to be alive!

Happy New Year to all, and here’s hoping 2013 proves just as interesting, and hopefully a lot more peaceful and sound. And may we ALL find ourselves able to keep our New Years resolutions and build upon all we’ve accomplished so far. And of course, with all the potential for medical and technological enhancements that are coming, I sincerely hope we can find ways to improve ourselves on a personal level too!

Of DIY Cybernetics and Biohacking

transhuman3It seems that biohackers and enthusiasts of body augmentation could be setting a new trend, and doing it all from the comfort of their basements. That’s the essence of an article filed by Neal Ungerleider this past September, in which he stated that biohackers have not only cloned the innovation strategies of Silicon Valley, but could also be reshaping how technology is being created.

Amongst their efforts are such things as brain interfaces that can control video games with human thoughts, Bluetooth sensors that are meant to go under the skin and send vital signs to mobile phones, tissue engineering that can create in vitro “steaks” and leather, and devices that convert brainwaves into actual speech. These efforts are collaborative in nature and connect numerous basements, labs and research facilities together to share research, resources, and breakthroughs.

Those who take an active part in this trend are often known as grinders or biohackers, people who have chosen not to wait for cybenetic enhancements and body augmentation to become commercially available and seek to create them on their own.

According to Ungerleider:

“West Coast biohackers and grinders were the pioneers of this tech-driven, California brand of utopianism… For biohackers everywhere, augmentation of humanity itself—whether through technology or more traditional methods—is the primary goal. Common conversation points include DIY cyborgs, the quantified self, and diet…

“But a growing community on the East Coast—in greater New York, Boston, and Pittsburgh—is synthesizing Silicon Valley’s entrepreneurial DNA for its unique innovation model. Experimentation and science here is not only an exercise in advancing humanity through tech but is often applied toward creating viable cybernetic products for the market.”

One such group is Biohackers NYC, a group that was formed in 2012 largely in response to all the innovation that was taking place on the opposite coast. In additi0n to the initial startup group, it was joined by numerous startups, incubators, and workspaces scattered across the outer boroughs. As group founder and psychiatrist Lydia Fazzio claimed in an interview back in September:

“Our intent was to cover the spectrum of biohacking from manipulating non-human genomes to also the body and the mind. It’s a holistic approach to the meaning of biohacking, whether technology or nutrition. However you get there, we all have the innate potential to be an optimal functioning human in society. Our question is: How do we get there?”

davinci_transhumanOne of the attractions of this new movement is that it allows the merger of skilled professionals and dedicated hobbyists a chance to collaborate on projects of mutual interest. It also takes advantage of new business and development models – i.e. crowdsourcing – which is made possible thanks to the digital revolution.

Already, message boards have sprung up that allow disparate “labs” to post information on their work and share with others who have similar interests and projects on the go. These include DIYbio, which deals with the larger field of DIY biotechnology labs; and biohack.me, where the possibilities of subdermal bone conduction headphones and echolocation implants are being contemplated.

TranshumanIn the end, this is really just a small part of a much larger movement, which takes on various names. On is transhumanism, a movement which believes that human limitations can and must be transcended with the help of technological innovation. Another is Singularitarianism, a movement popularized by such Futurists as Ray Kurzweil. These individuals believe that technology will (or has) reached the point where human beings can take control of their own mortality, abilities and evolution. While some are willing to wait, others are intent on making it happen sooner other than later.

Naturally, there is a great deal of skepticism towards this new trend. For one, there are countless people who believe it to be the stuff of “science fiction”, and not real science. But, as Ungerleider claims, this represents the culmination of trends that have been in the works for some time. What’s more, it represents the monetization and mass marketing of technologies which have been under development for many years. And in truth, the line between science fiction and science fact has always been a fine one. All that’s ever been needed for us to transcend it is for people to make it happen.

Sources: fastcompany.com, Wired.com, IO9.com

Scientists Raise the Alarm on Human Enhancements

enhancementThe concept of technological progress and its potential consequences has been the subject of quite a bit of attention lately. First, there was the announcement  from Harvard University and Human Rights Watch that a ban on killer robots was needed before the current pace of innovation led to the machines that could so without human oversight.

Then came the University of Cambridge’s announcement about the creation of the Center for the Study of Existential Risk (CSER) to evaluate new technologies. And last, there was the news the news that the DOD had signing a series of instructions to “minimize the probability and consequences of failures that could lead to unintended engagements,” starting at the design stage.

bionic_handConcordantly, back in early November, the Royal Society along with the Academy of Medical Sciences, British Academy, and Royal Academy of Engineering concluded a workshop called “Human Enhancement and the Future of Work” in which they considered the growing impact and potential risks of augmentation technologies. In their final report, they raised serious concerns about the burgeoning trend and how humanity is moving from a model of therapy to one in which human capacities are greatly improved. The implications, they concluded, should be part of a much wider public discussion.

Specifically, the report raised concerns on drugs and digital enhancements that will allow people to work longer, hard and faster. Such technologies could easily give rise to a culture of enhanced competitiveness, more than we currently know, where the latest in cybernetics, bionics and biomedical devices are used to gain and edge, not to remedy medical problems. Currently, things like bionic prosthesis are being created to aid amputees and injury victims; but as the technology improves and such devices become more effective than organic limbs, the purpose could change.

cyberpunk-eyeWhat’s more, there are the ethical implications of having such technology available to human beings. If people can upgrade their bodies to enhance their natural abilities, what will it means for those who get “left behind”? Will the already enormous gulf between the rich and poor expand even further and take on a new dimension? Will those who want to succeed in the business world be forced to scrounge so they can get the latest upgrades.

Or, as the panel’s final report put it:

“Work will evolve over the next decade, with enhancement technologies potentially making a significant contribution. Widespread use of enhancements might influence an individual’s ability to learn or perform tasks and perhaps even to enter a profession; influence motivation; enable people to work in more extreme conditions or into old age, reduce work-related illness; or facilitate earlier return to work after illness.”

At the same time however, they acknowledge the potential efficacy and demand for such technologies, prompting the call for open discourse. Again, from the report:

“Although enhancement technologies might bring opportunities, they also raise several health, safety, ethical, social and political challenges, which warrant proactive discussion. Very different regulatory regimes are currently applied: for example, digital services and devices (with significant cognitive enhancing effects) attract less, if any, regulatory oversight than pharmacological interventions. This raises significant questions, such as whether any form of self-regulation would be appropriate and whether there are circumstances where enhancements should be encouraged or even mandatory, particularly where work involves responsibility for the safety of others (e.g. bus drivers or airline pilots).”

In many ways, this report is overdue, as it is offering some rather obvious commentary on a subject which has been the subject of speculation and fiction for some time. For example, in the Sprawl Trilogy, William Gibson explored the idea of human enhancement and the disparity between rich and poor at length. In his world, the rich were ensured clinical immortality through AI and biotech while everyone else was forced to spend their savings just to afford the latest tech, merely so they could stay in the running.

However, just about all of the panel’s recommendations were most appropriate. They included further investigations into ensuring safety, affordability, and accessibility, not to mention that some of these enhancement technologies —  be they pharmaceutical, regenerative medicines, or cybernetics — should be regulated by the government. This last article is especially appropriate given the potential for personal misuse, not to mention the potential exploitation by employers.

With all the harm that could result from having technologies that could render human beings “postmortal” or “posthuman”, some degree of oversight is certainly necessary. But of course, the real key is a public educated and informed on the issue of cybernetics, bionics, and human enhancement, and what they could mean for us. As with so much else, the issue is one of choice, and awareness of what the consequences could be. Choose wisely, that’s the only guarantee! Hey, that rhymed… I smell a quote!

Source: IO9.com

The Future Is Here: Bionic Hands!

Behold, the latest in bionic technology! The bebionic 3 model prosthetic hand, by the RSL Steeper company! Encased in an aluminum chassis, boasting improved electronics, a redesigned thumb, and new motors that increase the power grip, this hand was first unveiled at the American Orthotic Prosthetic Association (AOPA) Conference in Boston this past September. Since that time, amputees have been obtaining the hand and incorporating it into their daily lives. And the results are quite encouraging!

In addition to being able to do delicate work, like handle eggs and fine china without breaking them, the hand is also capable of performing a power grip that is capable of generating 31.5 pounds of force. That’s quite the Kung Fu grip, just in case you were wondering. And in “hook” mode, the hand is able to bear a load of 99 pounds. So, though it doesn’t have quite the same dexterity or free range of motion as an organic hand, the bebionic is capable of performing all the basic tasks, and is pretty powerful to boot!

Much like the bionic leg which was popularized by Zak Vawter’s historic climb last weekend, the bebionic works by reading the nerve impulses from the wearer’s arm skin. These are amplified by the arm’s electronics and translated into one of 14 possible grip configurations. These different grips are uploaded to the hands internal memory and users are able to cycle through them to determine which grip they want for which purpose. For instance, a mouse-clicking action makes the thumb grip a mouse, while the index finger clicks the left button. The “precision open grip” can be used to grab small objects and the “tripod grip” can be used to write with a pen.

Currently, and depending on its configuration, the hand costs clinical centers between $25,000 and $35,000. In time, and as it becomes available for public purchase, the price is likely to come down somewhat. Still, such a revolutionary device will not come cheap for many years to come. It also comes available in a range of colors and designs, including snow and jungle camouflage and tiger stripes, as well as realistic silicone skin coverings. See the video below for some examples.

Combined with other advances in the field of bionics and prosthetic devices, the bionic hand presents some new and very exciting possibilities. For one, technologies like ReWalk and other exoskeletons are making it possible for paraplegics to walk again, while sophisticated wheelchairs like the wheelchairbot are making stairs and obstacles passable. Coupled with bionic limbs that are giving full ambulatory motion back to amputees, we could be looking at a future where robotic enhancements can restore any and all ability to accident victims, combat veterans and people born with physical deformities.

In addition, the most audacious developments, such as bionic enhancements or robot chairs that read brain waves directly, giving full motion to quadriplegics and the ability to communicate fully to people with degenerative conditions is still yet to come! Once such technologies are readily available and commercially viable, we might even be seeing the emergence of a cybernetics industry, where people can receive enhancements that not only restore abilities, but greatly enhance them. Artificial limbs the enhance strenght and speed, artificial eyes that enhance vision and provide projected images and augmented reality displays, and even silicate implants that enhance brain function and make people smarter.

Homo Superior people… I just got goosebumps!

And while we’re waiting on all that to happen, check out this promo video for the latest bebionic model:


And here’s a video of the bebionic going through a battery grip pattern tests:

The Future is Here: Animals Created from Stem Cells!

dna-computingThe field of biotech has been making some very interesting strides of late. First there was the medusoid, a cybernetic jellyfish that used electric current and real muscle tissue over a synthetic to generate movement. Then there was the creation of world’s first true cyborg flesh, where Harvard University researchers merged rat flesh and nanowires to create augmented” tissue. This was followed shortly thereafter by the creation of a remote controlled cyborg cockroach.

These are just the tip of the iceberg however, with the most impressive research and development in the field of biotech still yet to be unveiled. However, this most recent breakthrough is a real game-changer which is sure to lead in some new and interesting directions. This would be the creation, by scientists working at Kyoto University, of the world’s first animal crated entirely from stem cells.

Apparently, the research team produced mouse eggs using stem cells alone, and this comes on the heals of a previous accomplishment where the same team produced mouse sperm using the same methods. This allowed them to fertilize and create mice entirely by artificial means. While this presents a great deal of potential for stem cells research and its regenerative potential, there are those who worry that this might signal new and frightening possibilities for human procreation. If it’s possible to create human ova and sperm in the same way, could we be entering an age when human parents are no longer needed to create a child?

This represents the next step for Mitinori Saitou, the leader of the Kyoto research team, and his crew. It is there hope that these recent advancements will allow them to create primordial cells from human tissue. The primary purpose for this will be to help couples who are experiencing fertility problems by offering them the option of having biological children that are derived from their own stem cells. It could also allow women to have babies later in life, or for women who cannot get pregnant due to cancer treatments.

More conceptually, however, the breakthrough suggests that human babies might someday be born from tissue samples and cell lines alone. If all that is needed is for stem cells to be harvested from living tissue, then no parents need be directly involved. There are clearly a host of ethical implications that need to be addressed from this, not the least of which is the issue of who has the right to spawn human beings? And moreover, what purpose would they be spawned for? Human replacements? Breeding stock? Super soldiers? Oh, the mind reals at the possible sci-fi cliches!

Source: news.sciencemag.org

The Future is Here: Insect Biobots!

One small step for man, one giant leap for man-machine interface! Or man-roach interface, I guess! It seems that researchers at the iBionicS lab at North Carolina State University have created a remote-control system to stimulate and steer cockroaches. This report came at the 34th Annual International Conference of the IEEE Engineering in Medicine & Biology Society last month, and represents quite the step forward for cybernetics.

In short, the research team equipped a Madagascar hissing cockroach with a circuit board that connects directly to its antennae. It’s a well known fact that cockroaches, in addition to being nuclear war-resistant, use their two antennas to find their way around. By sending electrical signals to one or the other, they were able to steer the cockroach as it made its way around.

To be fair, this is not the first case of insect cyborgs being developed. In 2009, the researchers at iBionicS unveiled a similar program using remote-controlled hawk moths. In that same year, the University of California, Berkeley, and the University of Michigan presented their collaborate project: remote-controlled beetles! Here, the beetles had electrodes wired into their brains and flight muscles which were used to command them to take off and steer them while in the air.

Interestingly enough, research in both of these latter cases was being funded by the Defense Advanced Research Projects Agency (DARPA) with the goal of creating remote-controlled insects could go where humans cannot and aid in search-and-rescue or even spy missions. You’ve heard of UAV’s, aka. spy drones, doing reconnaissance, right? Well look out! The next time you see a flying beetle or a hawk moth, you could be on someone’s camera. Smile before you step on it!

And be sure to check out the video below of iBionicS lad testing their remote-control roach steering system.

Source: Discover Magazine

The Future is Here: Cyborg Flesh!

My thanks to Futurist Foresight for turning me onto this article. I would have reblogged, but it was just easier to follow the links and post on my own. You may recall some weeks back when the news hit the airwaves, about how researchers at Caltech developed the medusoid, a cybernetic jellyfish that was capable of mimicking the behavior of the original. Well, it turns out bioengineers at Harvard University have gone a step a further.

Merging the neurons, muscle cells, and blood vessels of various rats with nanowires and transistors that can monitor bioelectric impulses, these researchers were able to create the world’s first hybrid living/electronic cells. Much like the medusiod, the cells were controlled through electrical impulses, which allowed them to function like normal cells, except controlled via a computerized interface.

In time, they anticipate that this will lead to the development of nanotechnology that will allow them to make subtle changes in a person’s biochemistry. More than that, they could become the basis of tiny medical machines, such as microscopic pacemakers, or as microcircuits for prosthetics and silicate implants. On top of all that, this research is a big step along the road to the development of nanorobots, machines so tiny that they alter or maintain a person’s health at a cellular level.

“It allows one to effectively blur the boundary between electronic, inorganic systems and organic, biological ones,” said Charles Lieber, the team leader in an interview with New Scientist. And he’s absolutely right. With developments such as these and the boundaries they are pushing, human-machine interface, implant technology, robotic prosthetics and upgrades, and even the merging of our minds with computers could all be on the horizon. For some, this will mean the arrival of the long awaited Homo Superior, the new age man. For others, its a chance to tremble at the specter of a cybernetic future!

Both are fine choices, whatever floats your boat 😉

The Future is Here: The World’s First Cyborg!

TerminatorWell, that’s one way to look at this bio-engineered jellyfish. Sure, it’s a long way from Terminators, Replicants and Cylons, but it just might constitute a step in that direction. Known as a medusoid, this jellyfish was created by growing a thin layer of rat heart muscle cells on top of a layer of elastic silicone. The end result is a creature that is a merger of living and non-living components and swims like an actual jellyfish.

This feat of bioengineering is the result of a collaboration between Harvard biophysicist Kit Parker and Caltech biotechnology researcher Janna Nawroth, who used the bell-shaped configuration of a moon jelly as their blueprint. Like the moon jelly, the cyborg version moves by rapidly moving its appendages, then drifts by opening itself up again. This is accomplished by applying an electrical current to the heart muscle, which contracts to close the body, while the silicone part springs the body back into a flat shape.

medusoidThe point of this project, according to Nawroth, was to show that lifeforms, beginning with the most basic, could be reverse engineered and rebuild using biological and synthetic components. What’s more, they intended to demonstrate that mechanical components could be made to mimic biological functions. Though this may seem like a modest accomplishment to some, it effectively shows that biotech machines can exist and behave like normal creatures, at least basic ones.

Score one for the biotech team! Combined with AI research, nanotechnology and mind-machine interfacing, this is all grist to the Singularity mill. If we can create machines that can mimic complex biological functions, then there’s very little keeping us from creating artificial lifeforms… like synthetic humans! And if machinery can merge with biological tissue, then cybernetic enhancements capable of accelerating human thought might be possible too. Hence why this latest development should be seen as significant, and even a little bit scary!

Via IO9