The Future of Urban Planning: The Urban Skyfarm

urban-skyfarm-9The world’s population is projected to grow to between 9 and 10 billion people by the middle of the century. What’s more, roughly two-thirds of those people are expected to live in major cities. Coupled with the expected changes caused by Climate Change (i.e. increased drought and less in the way of arable land), and its understandable why urban farms are seen as a means of picking up the slack.

That’s the concept behind the Urban Skyfarm, a concept for a skyscraper that is shaped like a tree and comes with leaf-like decks to provide space for real trees to grow. Currently, most vertical farming operations – like warehouses in Chicago, Kyoto, Singapore and a recent skyscraper built in Sweden by Plantagon – grow plants with ultra-high-efficiency systems under artificial light.

urban-skyfarm-2However, this new design concept from Aprilli Design Studio takes a different approach, using lightweight decks to provide growing space outdoors on the sides of a giant skyscraper. The architects aren’t the first to embrace the trend of sticking greenery on towers, but they may be one of the first to look at how to use the technique to maximize food production. As architects Steve Lee and See Yoon Park explained:

Our version of the vertical farm was intended to become an independent, open-to-air structure which would be purely focusing on farming activities and sustainable functions such as generating renewable energy and performing air, and water filtration.

Designed to mimic the shape of an enormous tree, the Urban Skyfarm uses leaf-like decks to provide 24 acres of space for growing fruit trees and plants. The “trunk” houses an indoor hydroponic farm for greens, and solar panels and wind turbines at the top of the tower provide enough energy to power the whole operation. The design would also capture rainwater and filter it through a constructed wetland before returning it to a nearby stream.

urban-skyfarm-5So in addition to growing food and using rainwater to provide irrigation, the building also was also designed with an eye towards energy independence. The architects envision the project in the middle of downtown Seoul, South Korea:

It seemed to be an ideal place to test out our prototype since the specific area is very dense and highly active and has been suffering for a long time by all sorts of environmental problems resulting from rapid urbanization…With the support of hydroponic farming technology, the space could efficiently host more than 5,000 fruit trees. Vertical farming is more than an issue of economical feasibility, since it can provide more trees than average urban parks, helping resolve urban environmental issues such as air pollution, water run-off and heat island effects, and bringing back balance to the urban ecology.

The design would also provide community gardens, park space, and a farmers market to cater to a demand for fresh, local food in a city where apples can cost more than $20 at local markets.

urban-skyfarm-7Vertical farming has already started in South Korea. Another project, based in Suwon, is growing food in a three-story building and may eventually expand into a skyscraper. But the outdoor vertical farm is just a concept for now. Lee and Park are confident this is the way of the future, and that demand for clean, sustainable buildings that grow fresh food is only going to increase:

We believe there will be more attention and discussions of vertical farms as the 2015 Milan Expo approaches, and we hope the Urban Skyfarm can become part of the discussion as a prototype proposal. Vertical farming really is not only a great solution to future food shortage problems but a great strategy to address many environmental problems resulting from urbanization.

And with the problems of urban growth and diminished farmland occurring all over the developed world – but especially in nations like China, Indonesia, the Philippines, and India (which are likely to be the hardest hit by Climate Change) – innovative designs that combine sustainability and urban farming are likely to become all the rage all over the world.

Source: fastcoexist.com

Powered by the Sun: Efficiency Records and Future Trends

solar_panelThere have been many new developments in the field of solar technology lately, thanks to new waves of innovation and the ongoing drive to make the technology cheaper and more efficient. At the current rate of growth, solar power is predicted to become cheaper than natural gas by 2025. And with that, so many opportunities for clean energy and clean living will become available.

Though there are many contributing factors to this trend, much of the progress made of late is thanks to the discovery of graphene. This miracle material – which is ultra-thin, strong and light – has the ability to act as a super capacitor, battery, and an amazing superconductor. And its use in the manufacture of solar panels is leading to record breaking efficiency.

graphene-solarBack in 2012, researchers from the University of Florida reported a record efficiency of 8.6 percent for a prototype solar cell consisting of a wafer of silicon coated with a layer of graphene doped with trifluoromethanesulfonyl-amide (TFSA). And now, another team is claiming a new record efficiency of 15.6 percent for a graphene-based solar cell by ditching the silicon all together.

And while 15.6 efficiency might still lag behind certain designs of conventional solar cells (for instance, the Boeing Spectrolabs mass-production design of 2010 achieved upwards of 40 percent), this represents a exponential increase for graphene cells. The reason why it is favored in the production of cells is the fact that compared to silicon, it is far cheaper to produce.

solar_power2Despite the improvements made in manufacturing and installation, silicon is still expensive to process into cells. This new prototype, created by researchers from the Group of Photovoltaic and Optoelectronic Devices (DFO) – located at Spain’s Universitat Jaume I Castelló and the University of Oxford – uses a combination of titanium oxide and graphene as a charge collector and perovskite to absorb sunlight.

As well as the impressive solar efficiency, the team says the device is manufactured at low temperatures, with the several layers that go into making it being processed at under 150° C (302° F) using a solution-based deposition technique. This not only means lower potential production costs, but also makes it possible for the technology to be used on flexible plastics.

twin-creeks-hyperion-wafer-ii-flexibleWhat this means is a drop in costs all around, from production to installation, and the means to adapt the panel design to more surfaces. And considering the rate at which efficiency is being increased, it would not be rash to anticipate a range of graphene-based solar panels hitting the market in the near future – ones that can give conventional cells a run for their money!

However, another major stumbling block with solar power is weather, since it requires clear skies to be effective. For some time, the idea of getting the arrays into space has been proposed as a solution, which may finally be possible thanks to recent drops in the associated costs. In most cases, this consists or orbital arrays, but as noted late last year, there are more ambitious plans as well.

lunaring-3Take the Japanese company Shimizu and it’s proposed “Luna Ring” as an example. As noted earlier this month, Shimizu has proposed creating a solar array some 400 km (250 miles) wide and 11,000 km (6,800 miles) long that would beam solar energy directly to Earth. Being located on the Moon and wrapped around its entirety, this array would be able to take advantage of perennial exposure to sunlight.

Cables underneath the ring would gather power and transfer it to stations that facing Earth, which would then beam the energy our way using microwaves and lasers. Shimizu believes the scheme, which it showed off at a recent exhibition in Japan, would virtually solve our energy crisis, so we never have to think about fossil fuels again.

lunaring-2They predict that the entire array could be built and operational by 2035. Is that too soon to hope for planetary energy independence? And given the progress being made by companies like SpaceX and NASA in bringing the costs of getting into space down, and the way the Moon is factoring into multiple space agencies plans for the coming decades, I would anticipate that such a project is truly feasible, if still speculative.

Combined with increases being made in the fields of wind turbines, tidal harnesses, and other renewable energy sources – i.e. geothermal and piezoelectric – the future of clean energy, clear skies and clean living can’t get here soon enough! And be sure to check out this video of the Luna Ring, courtesy of the Shimizu corporation:


Sources:
gizmodo.com, fastcoexist.com

The Future is Here: Wind Drones and Clean Buildings

wind_powerIt’s no secret that wind power is one of main clean forms of energy that is being considered as a viable alternative to coal, oil and gas. But much like solar, tidal and geothermal, the method has some flaws that is preventing it from being adopted in a more widespread fashion. However, as an infinitely renewable source of energy, it likely just a matter of time before technical developments lead to its wholesale use.

The first challenge has to do with size. Currently, wind farms are massive operations, and many designers think they need to continue to get bigger in order to generate the kinds of electricity we currently need. However, a Netherlands-based startup named Ampyx Power is looking in another direction: an airborne wind turbine that they think could capture the same amount of energy as a large operation.

ampyx-power-powerplane-6-topview-1Basically, their design is a small glider plane attached by cable to a generator, which is then deployed into the air and flies in figure eights. As it moves, the glider pulls on the capable, and the generator converts the movement to electricity. Since it isn’t attached to a tower, it can soar nearly 2,000 feet in the air, catching stronger winds that produce about eight times more energy than the lower-altitude breezes that reach a normal wind turbine.

So in addition to being able to produce more power than a typical wind farm, it costs significantly less than its competitor. The average wind farm weighs about 120 metric tons, while the glider system weighs in at a mere 363 kilograms (800 pounds). And in addition to being cheaper than other renewables, the process may even be cheaper than coal.

wind-power-660As Wolbert Allaart, the startup’s managing director, put it:

We’re replacing tons of steel and concrete. It’s a huge materials reduction, and we can produce the same amount of power. That obviously has an effect on cost as well… The whole reason why we’re doing this is because we think we can get the cost of a kilowatt-hour well below the price of coal.

And Ampyx is hardly alone in developing the technology. In fact, their design is similar to California-based Makani Power’s glider. This company was acquired by Google earlier this year, while Ampyx raised the necessary capital via a crowdfunding campaign. And though there are some differences in the design and methods employed, both companies dream of a day when wind will replace coal and other dirty means.

ampyx-power1Because the planes are so efficient, places that might not have worked for wind power in the past – like forests, where trees catch and redirect the wind – could be a fit for the system, so the market is wide open. And given his country’s growing interest in wind power, Allaart hopes to introduce it to the domestic market very soon:

In Holland, where we’re based, we now have a 4.3 billion Euro subsidy scheme for offshore wind. People are starting to wonder already, if we have a technology being developed in our own country that could provide offshore wind at more or less competitive price with coal, why on Earth are we still subsidizing this so heavily? How fast this grows will depend on political will.

pertamina-energy-tower4site-aerialsomAnother very cool wind-related story comes from Jakarta, where a massive tower is being planned that will be capable of generating all its own power. It’s known as the Pertamina Energy Tower, the proposed headquarters of the Pertamina power company. And while the proposed building will be 99 stories in height, it will also gather all its power from wind, solar, and geothermal energy.

When it comes to its wind operations, the building’s height plays to its advantage. At the top of the building, a funnel captures wind, sucks it inside, and speeds it up to run a series of vertical wind turbines. In this respect, the building operates like a giant, vertical wind tunnel. Solar energy will also be incorporated through panels that will cover the roofs of other buildings on the new campus.

pertamina-energy-tower2energy-ribbonsomBut perhaps the most impressive feat comes in the form of geothermal, a type of energy that’s uniquely suited for Indonesia because it’s a volcanic island chain. Geothermal systems in Indonesia can tap directly into superheated sources of subterranean steam with a single pipe, unlike typical systems that are more complicated and expensive to engineer.

Scott Duncan, the director of Pertamina’s architecture firm – Skidmore, Owings & Merrill LLP (SOM) – who led the project, describes it this way:

It would essentially provide an unlimited energy source for the tower and campus and could make the tower the world’s first energy-positive supertall building.

pertamina-energy-tower6In addition to meeting this clean-energy trifecta, the design of the tower is focused on saving energy as much generating it. Sun-shading “leaves” on two sides of the building cut glare and shade the brightest sunlight while still keeping the inside of the offices bright enough to avoid most artificial lighting. Instead of power-sucking air conditioners, the building uses water-based radiant cooling systems to keep the temperatures even.

Along with other strategies, the energy-saving design elements mean that the campus – which will include a mosque, a performing arts and exhibition center, and sports facilities along with the office space – can keep energy use low enough that renewable power may be able to cover its entire energy needs. In short, the building could prove to be a model of energy-independence.

pertamina-energy-tower5However, the motivation for this project go beyond the altruistic, and involve a good many practical considerations. For starters, Jakarta still has an unreliable power grid, and if the campus generates its own power, work and play won’t get interrupted. The buildings also won’t have to rely on diesel fuel generators if the city’s power goes down.

The technology is expected to be adopted elsewhere, particularly China where wind power is expanding all the time. Indonesia, despite its easy access to geothermal energy, is not the windiest place in the world. Cities that are strategically located along coastlines or in elevated regions would find the wind tunnel feature that much more useful, reducing their dependence on the other two forms of energy.

shanghai_towerWhat’s more, this building is in many respects what one would call an Arcology, and just happens to be the second one being planned for construction in the world today. The other, un-coincidentally enough, is China’s Shanghai Tower, a building that is one-third green space and a transparent second skin that surrounds the city in a protective air envelope that controls its internal temperature.

And with global energy prices increasing, the sources of easily-accessible oil disappearing, and atmospheric CO2 levels steadily rising, we can expect to see more buildings like these ones going up all around the world. We’re also likely to see more creative and innovative forms of power generation popping up in our backyards. Much like peak oil, centralized grids and dependence on unclean energy is disappearing…

And in the meantime, enjoy this video of the Ampyx Power glider in action:


Sources:
fastcoexist, (2)