Climate Crisis: (More) Smog-Eating Buildings

pollution_eating2Air pollution is now one of the greatest health concerns in the world, exceeding cigarettes as the number one killer of people worldwide. With an estimated 7 million deaths in 2012 alone, the WHO now ranks it as the biggest global environmental killer. In fact, of the 1,600 major cities surveyed from around the world, over half are now above the safe limits of Particulate Matter (PM), with the highest cost borne by the poorer regions of South-East Asia and the Western Pacific.

Because of this, Carbon Capture technology is being seriously considered as an integral part of the future of urban planning and architecture. So in addition to addressing the issues if housing needs, urban sprawl and energy usage, major buildings in the future may also come equipped with air-cleaning features. Already, several major cities are taking advantage, and some innovative and futuristic designs have emerged as a result. Consider the following examples:

aircleaning_skyscraperCO2ngress Gateway Towers: Conceived by architects Danny Mui and Benjamin Sahagun while studying at the Illinois Institute of Technology, this concept for an air-cleaning skyscraper earned them an honorable mention in the 2012 CTBUH student competition. And while there are no currents plans to build it, it remains a fitting example of innovative architecture and merging carbon capture technology with urban planning and design.

The concept involves two crooked buildings that are outfitted with a filtration system that feeds captured CO2 to algae grown in the building’s interior, which then converts it into biofuels. Aside from the scrubbers, the buildings boast some other impressive features to cut down on urban annoyances. These include the “double skin facade”- two layers of windows – that can cut down on outside traffic noise. In addition, the spaces on either side of the buildings’ central elevator core can be used as outdoor terraces for residents.

CC_catalytic_clothingCatalytic Clothing: A collaborative effort between Helen Storey and Tony Ryan, the goal of this experiment is to incorporate the same pollution-eating titanium dioxide nanoparticles used in carbon capture façade into laundry detergent to coat clothing. According to Ryan, one person wearing the nanoparticle-washed clothes could remove 5 to 6 grams of nitrogen dioxide from the air a day; two pairs of jeans could clean up the nitrogen dioxide from one car.

If enough people in downtown New York, Beijing, Mumbai, Mexico City – or any other major city of the world renowned for urban density, high concentrations of fossil-fuel burning cars, and air pollution – would wear clothing coating with these nanoparticles, air pollution could be severely reduced in a few years time. And all at a cost of a few added cents a wash cycle!

CC_in_praise_of_airIn Praise of Air: Located in Sheffield, England, this 10×20 meter poster shows Simon Armitage’s poem “In Praise of Air”. Appropriately, the poster doubles as a pollution-eating façade that uses titanium dioxide nanoparticles. The full poem reads as follow:

I write in praise of air.  I was six or five
when a conjurer opened my knotted fist
and I held in my palm the whole of the sky.
I’ve carried it with me ever since.

Let air be a major god, its being
and touch, its breast-milk always tilted
to the lips.  Both dragonfly and Boeing
dangle in its see-through nothingness…

Among the jumbled bric-a-brac I keep
a padlocked treasure-chest of empty space,
and on days when thoughts are fuddled with smog
or civilization crosses the street

with a white handkerchief over its mouth
and cars blow kisses to our lips from theirs
I turn the key, throw back the lid, breathe deep.
My first word, everyone’s  first word, was air.

According to Tony Ryan of University of Sheffield, who created it with his colleagues, the poster can absorb about 20 cars’ worth of nitrogen oxide a day and would add less than $200 to the cost of a giant advertisement. While it is a creative tool for promoting a local poetry festival, it also serves as proof of concept that the technology can be incorporated into practically any textile, and will be reproduced on several more banners and posters in the coming months.

hyper_filter1Hyper Filter Skyscraper: Designed by Umarov Alexey of Russia, the Hyper Filter Skyscraper recognizes the threat of environmental pollution and seeks to merge carbon capture technology with the building’s design. Under today’s levels of pollution, harmful substances spread over hundreds of kilometers and a whole region and even a country could represent a single pollution source. Hence the plan to place a air-scrubbing building at the heart of the problem – an urban core.

Consistent with CC technology and the principle of photosynthesis, the Hyper Filter Skyscraper is designed to inhale carbon dioxide and other harmful gases and exhale concentrated oxygen. The skin of the project is made out of long pipe filters that ensure the cleaning process. While clean air is released to the atmosphere, all the harmful substances are stored for use in the chemical industry for later use. These can include chemicals products, biofuels, and even manufactured goods.

CC_mexico-hospital-facade-horizontal-galleryManuel Gea González Hospital: Located in Mexico City, this hospital was unveiled last year. The building features a “smog-eating” façade that covers 2,500 square meters and has titanium dioxide coating that reacts with ambient ultraviolet light to neutralize elements of air pollution, breaking them down to less noxious compounds like water. This was Berlin-based Elegant Embellishment’s first full-scale installation, and its designers claim the façade negates the effects of 1,000 vehicles each day.

Funded by Mexico’s Ministry of Health, the project is part of a three-year, $20 billion investment into the country’s health infrastructure, an effort which earned Mexico the Air Quality Prize at the 2013 City Climate Leadership Awards in London. Considering the fact that Mexico City is <i>the</i> most densely-populated cities in the world – with a population of 21 million people and a concentration of 6,000/km2 (15,000/sq mi) – this should come as no surprise.

CC-pollution-palazzo-italia-horizontal-galleryPalazzo Italia: Located in Milan, this building is designed by the architectural firm Nemesi & Partners, and comes equipped with a jungle-inspired façade that is built from air-purifying, “biodynamic” cement. This shell will cover 13,000 square meters across six floors, and will remove pollutants from the air and turns them into inert salts. Apparently, the material from Italcementi only adds 4-5 percent to the construction costs.

Scientists in the Netherlands have also adapted the photocatalytic material to roads, claiming it can reduce nitrous oxide concentrations by 45 percent. The building is set to launch next year at the 2015 Milan Expo.

Propogate Skyscraper: This pollution skyscraper was designed by Canadian architects YuHao Liu and Rui Wu, and won third place at this year’s eVolo’s Skyscraper Competition. Basically, it envisions a building that would turn air pollution into construction materials and use it to gradually create the building. Relying on an alternative carbon-capture technique that employs philic resins and material processes to transform carbon dioxide into solid construction material, their uses carbon dioxide as a means to self-propagate.

3028400-slide-propagateA simple vertical grid scaffold forms the framework and takes all the ingredients it needs for material propagation from the surrounding environment. Individual living spaces are built within this gridwork, which creates open square spaces between lattices that can then be filled by tenements. Its pattern of growth is defined by environmental factors such as wind, weather, and the saturation of carbon dioxide within the immediate atmosphere.

Thus each building is a direct reflection of its environment, growing and adapting according to local conditions and cleaning as the air as it does so. Unlike conventional skyscrapers, which rely on steel frame and concrete casting, the proposed skyscraper suggests a more environmental conscious construction method, an alternative mode of occupation and ownership, and possibly a distinct organization of social relationships.

Synthesized Spider Web: Another innovative solution comes from Oxford’s Fritz Vollrath, who was inspired by the behavior of spider silk fibers. With the addition of a glue-like coating, the thinness and electrical charge of spider silk allows them to capture any airborne particles that pass through them. These synthesized silk webs could be used like a mesh to capture pollutants – including airborne particulates, chemicals, pesticides, or heavy metals – coming out of chimneys or even disaster zones.

Spiderweb_towersSpiderweb Tower: Considering that London has some of the worst air quality in Europe, and the fact that air pollution is thought to be the second biggest risk to public health in the UK after smoking, solutions that can bring carbon capture and pollution-eating technology to downtown areas are in serious demand. And one solution comes from graduate architect Chang-Yeob Lee, who has come up with a radical design that would turn London’s BT Tower into a pollution harvesting ‘spiderweb’ that turned smog into bio-fuel.

Lee’s plan envisions the skyscraper being covered in a ‘giant eco-catalytic converter’ that traps pollutants from the capital’s air. At the same time, nano-tubes of titanium would turn carbon-dioxide into methanol and water using only the power of the sun. As Lee put it:

The project is about a new infrastructure gathering resources from pollutants in the city atmosphere, which could be another valuable commodity in the age of depleting resources.

Quite a bit of potential, and just in the nick of time too! And be sure to watch this video


Sources: iflscience.com, wired.co.uk, cnn.com, evolo.com, latintimes.com, catalyticpoetry.org

The Future of Cities: eVolo’s 2014 Skyscraper Competition

3028400-slide-launchspireThe skyline of the future… Chances are, it’s something we’ve all wondered about at one time or another. Given the current rate of urban expansion, combined with population growth and environmental concerns, it’s essentially a given that cities of the future will look quite different from cities today. And when it comes time to break new ground and convert old centers, contracts will be given to those designs that can meet all of these challenges.

That’s the idea behind eVolo Magazine’s Skyscraper Competition, an annual event that for the past nine years has awarded architects and planners who create the problem-solving skyscrapers of the future. This year, over 600 entries were submitted from around the world, and top marks were given for those that addressed the problems or urban sprawl, pollution, sustainable living, and incorporated the latest in design technology.

These included the latest in renewable energy, carbon-capture technology, additive manufacturing (aka. 3D printing), and of course, the time honored concept of Paolo Soleri’s Arcology – a school of thought that merges architecture with ecology for smarter and more sustainable living. Here are just a few of the entries that received top marks in this year’s competition, which include the top three and numerous honorable mentions:

Winners:

Vernacular Versatility:
0302-0The winner of this year’s Skyscraper Competition, this entry was created of Korean-American designer Yong Ju Lee. who used the concepts of the “Hanok” and “Gagu” as his inspiration. In traditional Korean architecture, the Hanok refers to a type of house with an exposed wooden structure and tiled roof. Gagu refers to a special wooden structural element that is located directly beneath the main roof where the column meets the beam and girder and fastens them without the need for nails or additional parts.

Traditionally, this structural system has only ever been employed in the creation of single-story residences. However, modern modeling software allowed Lee to adapt this traditional system to complex high-rise structural planning to meet contemporary purposes and programs. Vernacular Versatility can open a new chapter of possibilities to bring this old construction and design tradition to the present day with efficiency and beauty.

Designed to be located within one of Korea’s busiest districts, Vernacular Versatility seeks to use a traditional design concept to combat the growing problem of urban sprawl, as well as associated health risks such as atopy and asthma, as well as addressing the destructive impacts urbanization has been having on traditional Korean culture and the environment.

Car and Shell Skyscraper:0697-0Also known as “Marinetti’s Monster” and created by Mark Talbot, Daniel Markiewicz, this concept for a “city in the sky” took home 2nd place at this year’s competition. As a solution for what to do about Detroit’s aging infrastructure, the project proposes a vertical suburban neighborhood equipped with recreational and commercial areas where three main grids (streets, pedestrian pathways, and structure) are intertwined to create a box-shaped wireframe.

Inspired by all the attempts to “save Detroit”, which is focused largely on preserving its dwindling suburban areas, Talbot and Markiewicz instead thought of building a new neighborhood within a single enormous skyscraper located in the core. Here, dozens of single-family homes are stacked into a vertical grid, new roads cross through the building, and traditional and contemporary living all plug into a framework to create a rich urban environment.

Propagate Skyscraper:
3028400-slide-propagateThis year’s third place went to Canadian designers YuHao Liu and Rui Wu for their concept of a building that would turn air pollution into construction materials and use it to gradually create the building. Relying on an alternative carbon-capture technique that employs philic resins and material processes to transform carbon dioxide into solid construction material, their building employs additional material that uses carbon dioxide as a means to self-propagate.

The building uses a simple vertical grid scaffold as a framework and takes all the ingredients it needs for material propagation from the surrounding environment. Individual living spaces are built within this gridwork, which creates open square spaces between lattices that can then be filled by tenements. Its pattern of growth is defined by environmental factors such as wind, weather, and the saturation of carbon dioxide within the immediate atmosphere.

Thus each building is a direct reflection of its environment, growing and adapting according to local conditions and cleaning as the air as it does so. Unlike conventional skyscrapers, which rely on steel frame and concrete casting, the proposed skyscraper suggests a more environmental conscious construction method, an alternative mode of occupation and ownership, and possibly a distinct organization of social relationships.

Honorable Mentions:

Climatology Tower:
??Designed by Yuan-Sung Hsiao, Yuko Ochiai, Jia-Wei Liu, Hung-Lin Hsieh and Japan and Taiwan, the Climatology Tower is a proposed skyscraper designed as a research center that evaluates urban meteorology and corrects the environment through mechanical engineering. This involves analyzing microclimates within cities as a result of the use of industrial materials, the accumulation of buildings, and the scarceness of open spaces. In order to maintain a healthy environment for the city, two main strategies are employed.

The first is Environmental Control Engineering, which consists of a system of evaluation and operational programs. Evaluation programs inspect city climates through a variety of factors such as insolation, radiation, and thermal coverage. Collected data is compared with humidity levels and then mechanical systems respond to reduce or increase the levels to optimal environmental conditions. The second is Information Expression, a system that is becoming increasingly common in East Asia.

Basically, in addition to automatically adjusting to optimal environmental conditions, data is transferred from a control center to different departments in this city. This can alert entire communities of present and upcoming environmental hazards and conditions, much as residents in major cities are currently given “smog alerts”. Climatic information is also displayed publicly, though digital networks, notifying the public on maintaining certain conditions, to preserve both energy and health.

Here-After:Here-AfterDesigned by Tsang Aron Wai Chun of Hong Kong, the Here-After project is a proposal to reuse the Ruashi copper mine located in Lubumbashi, Congo. The mine is predicted to stop production in 2020, at which time it would be abandoned, leaving as an enormous urban void surrounded by a rapidly expanding city. The Here-After projects seeks to make use of the left over space, waste soil, and sulfuric acid from the mine drainage and former copper production.

A machine will reuse the waste soil to neutralize the sulfuric acid, which in turn will be used to erode the land to be used as raw buildings blocks for the project. As the machine operates, starting from the South end, the remaining structures from the neutralization process would be reconfigured as a university campus. Throughout the building process the contour, the campus, and the public spaces would continuously change their relationships and form.

Hyper Filter Skyscraper:
hyper_filterDesigned by Umarov Alexey of Russia, the Hyper Filter Skyscraper recognizes the threat of environmental pollution and seeks to merge carbon capture technology with the building’s design. Under today’s levels of pollution, harmful substances spread over hundreds of kilometers and a whole region and even a country could represent a single pollution source. Hence the plan to place a air-scrubbing building at the heart of the problem – an urban core.

Consistent with CC technology and the principle of photosynthesis, the Hyper Filter Skyscraper is designed to inhale carbon dioxide and other harmful gases and exhale concentrated oxygen. The skin of the project is made out of long pipe filters that ensure the cleaning process. While clean air is released to the atmosphere, all the harmful substances are stored for use in the chemical industry for later use. These can include chemicals products, biofuels, and even manufactured goods.

Hyper-speed Vertical Train Hub:
Verticle_train_skyscraper1All around the world, nations from the USA, UK, Japan and China are again consolidating futuristic proposals for an advanced public transport network, to maximize the economic growth of their cities. The Hyper Speed Vertical Train Hub is an extension of this, aiming to resolve the inevitable challenges that cities will face by 2075, and offering a deliverable and sustainable solution for the future of the transport generation.

As the world’s population dramatically increases, the demand for goods, natural resources, foods, fuel and land would have increased significantly by 2075. By then, the world’s population will reach an estimated 10 or 11 million, and the majority of them (6 or 7 billion) will gravitate towards living in mega-cities. This will increase pressure and competition for adjacent suburban land, therefore forcing cities to explore more innovative forms of public transport.

Verticle_train_skyscraperConsistent with a key principle of arcology, this proposal seeks to take advantage of vertical space in order to use available land more efficiently. By flipping the traditional form and function of the current train design into a vertical, cylindrical mass, the Vertical Train Hub seeks to eliminate the current impact that traditional stations have on land use, therefore returning the remaining site mass back to the densely packed urban Mega City.

This remaining land will surround the base of the tower forming a large urban park, leading towards to the base of the Hyper-Speed Vertical Hub. The trains will create a dynamic and kinetic facade, one that will be continuously evolving and responsive to the workings of the vertical hub. Passengers will travel into the main lobby, allowing travelers to ascend through the atrium and through the platforms and onto the carriages. The high-speed trains will maximize time efficiency, able to traverse 482 km (300 miles) in just thirty minutes.

As the train travels and transitions from its horizontal formation, and ascends up the facade vertically, the carriages will pivot similar to that on a ‘Ferris wheel’, allowing the passengers within the carriage to remain in an upright position and facing towards the cityscape. The carriages will be supported by a magnetic structure located at either side, eliminating the need for rails beneath, and allowing the carriages and its passengers to connect to the tower.

Launchspire:
launchspireDesigned by Henry Smith, Adam Woodward, Paul Attkins of theUnited Kingdom, the Launchspire is an arcological design that also seeks to eliminate much of the CO2 emissions associated with air travel. This year, commercial air travel is celebrating its centenary; and looking ahead to 2050, aviation is predicted to fly 16 billion passengers and 400 million tones of cargo. This radical re-interpretation of the skyscraper would eliminate the hydrocarbon dependency of aircraft during takeoff through the use of an electromagnetic vertical accelerator.

On short flights, as much as 25% of the total fuel consumed is used during takeoff. The most fuel-efficient route length for airlines is 4,300 kilometers, but roughly half the flights taking place in the developed world cover less than 500 kilometers. An electromagnetic vertical accelerator, utilizing the technological principles developed at CERN’s LHC and maglev train propulsion, would provide a method for commercial aircraft to be accelerated to cruising speed using renewable electrical energy sources from ground-based infrastructure.

launchspire1This new design methodology envisions a ‘spiral tube’ structure that would reinvigorate the ‘core and floor plate’ model of high-rise buildings. Schools, hospitals, commercial, and residential properties would be interspersed throughout the tower with approximately one third of all Plots to be public green spaces, nature reserves and farm land. Due to the scale of the building, different climates would be experienced, with various wildlife and crop species, whilst also being natural devices for internal climate control.

The concept is essentially a helical version of the classic urban grid environment. This has the benefits of extreme high density, elevated living, mass transportation to different levels, pedestrian and cycle travel locally to enable healthy living. Community interaction and a unique and varied sense of place is achieved to each area of the tower. As the building ages specific areas develop to support an organic and culturally rich network of settlements within the matrix of the structure.

The towers can be built close to renewable energy infrastructures; hydropower in the mountains, tidal and offshore wind nearer the coast. The city is the building, the surrounding environment will remain natural thus the urban realm becomes a vertical entity within the wilderness. The building is effectively a confluence of road, rail, air and space transportation, and takes advantage of vertical spacing to reduce the impact on the local environment.

New Tower of Babel:
babelDesigned by Petko Stoevski of Germany, this perhaps unfortunately-named building seeks to invert the relationship between structures and their surrounding environment. Essentially, it is a steel construction built over a desert surface with multiple levels planned depending on the landscape’s topology. The top two panels are made of glass, and the air contained in between is warmed up by the sunlight. The structure is slightly tilted upwards, which leads the air to the middle of the tower into an inner cylindrical.

The updraft power channels the warm air into the chimney tower, propelling the wind turbines located in the base and converting the kinetic energy into electrical power. Under the glass panels, photovoltaic panels are placed to generate electricity while reflecting the sunrays, thereby offering more warming. Moreover, the photovoltaic panels cast a shadow, cooling down the land’s surface and creating a microclimate that allows the creation of residential and recreational areas as well as the development of agriculture.

The Tower of Babel establishes a new landscape, which makes use of the natural forces of an upwind power plant and therefore stretches from the horizontal to the vertical. The building is characterized by many different spaces and leaves their use open to improvisation. Therefore, life develops in different places with different intensity. The project reinforces the principles of sustainability, which allow long term economic, social, and ecological development.

PleXus Tower:
PieXus_towerDesigned by Chris Thackrey, Steven Ma, Bao An Nguyen Phuoc, Christos Koukis, Matus Nedecky, Stefan Turcovsky of the United States, the PleXus Tower is proposed development for the West Hong Kong Harbor. It was conceived as a segmented, but highly connected network of major transportation functions, as well as housing conventional program, that would merge the concepts of interconnectedness, renewable energy, and ecology into the same fabric.

The design starts out as a series of distributed pods reaching out to connect with the city’s transportation, accepting traffic in the form of boats, ferries, and other water vehicles. Bridged together by connected pipelines over the water, these pods work in harmony with the existing Macau Ferry Terminal. As people move inward from these pods, they travel through a series of different structures, beginning with  a horizontal parking structure that also connects to the highway network to efficiently receive car traffic.

PieXus_tower1Farther up, business and shopping space is available, all accessible by car to the highest level of the tower. The upper reaches of the towers are set aside for residential space, providing a living area that incorporates spectacular views of the dynamic city skyline. A heliport on top that can receive air traffic from above, and power is supplied by the south-facing side of the building that comes equipped with numerous solar panels.

The skin is also breathable, with numerous openings designed to overlap each other, undulating throughout, allowing carbon dioxide to easily filter out from the designated parking areas on the lower levels. Each parking level will also utilize foliage to further filter carbon dioxide from the air helping to reduce pollution in Hong Kong. At night, lights will glow from the panels, reminding people of the connections these segments share as well as blending in with Hong Kong’s unique night skyline.

Project Blue:
project_blueDesigned by Yang Siqi, Zhan Beidi, Zhao Renbo, Zhang Tianshuo of China, Project Blue is designed with China’s explosive growth in mind. On the one hand, the country’s “economic miracle” has left the world in awe. But on the other, the country is paying a big price for being the “factory of the world”, in the form of getting polluted at an alarming speed. Chinese cities are now characterized by an unhealthy hazy weather as the result of large amounts of suspended particles in the air.

The purpose of Project Blue is to transform suspended particles into green energy by creating an enormous upside down cooling tower with a multi-tubular cyclic desulfurization system that produces nitrogen and sulfur. When both elements are combined with the atmospheres surplus of carbon monoxide, the result is “water coal” that would later be transformed into methane through a low-pressure reaction called low pressure efficient mathanation.

This methane could then be converted into biofuel that would then be shipped to the surface, providing a clean alternative for China’s fast-growing supply of gasoline cars. Consistent with many modern designs that utilize carbon capture technology, Project Blue would therefore be combating the problem of emissions and air pollution at both ends.

Rainforest Guardian:
3028400-inline-rainforest-guardian
While most of the concepts were designed for cities, a few were made for more remote locations. The Rainforest Guardian, from Chinese architects Jie Huang, Jin Wei, Qiaowan Tang, Yiwei Yu, and Zhe Hao, was one such example. Designed to sit on the edge of the Amazon, capturing and storing rainwater in the rainy season to help fight fires in the dry season, the building also has labs located at the top for scientists studying and monitoring the local environment.

The lotus-shaped water tower is captures rainwater directly and then filters and stores it in its spare reservoirs. Using capillarity combined with active energy, the aerial roots with a distinct sponge-structure can absorb and store the excess water without disturbing the Amazon’s ecosystem. In the case of fire, firefighters fly to the scene and extinguish the fire with the collected water. In addition, the laboratories can act as exhibition spaces for tourists to create environmental awareness.

Sand Babel:
0656-1Produced by designers Qiu Song, Kang Pengfei, Bai Ying, Ren Nuoya, and Guo Shen of China, the Sand Babel uses an idea similar to that being proposed by NASA and the ESA to build settlements on the Moon. Basically, their plan is to use sintering and additive manufacturing to turn desert sand into a series of ecological skyscrapers.These structures would serve as scientific research and testing facilities, tourist attractions for the desert, and would be divided into two parts.

The first part, located above ground, consists of several independent structures for a desert community while the second part, located partially underground, would connect several different buildings together and create a multi-functional tube network system. The main portion of each building is constructed with sand, sintered through a solar-powered 3D printer to create walls of solid ceramic.

The top structures utilizes a spiral skeleton shape, inspired by desert phenomena like Tornadoes and mushroom rocks. These are tall, straight and have high tensile strength, and are thus able to withstand high winds. The net structure of the lower sections are similar to tree roots, effectively anchoring each building into the ground. The dual funnel model provides cooling through cross-ventilation, as well as ensuring that water can be collected through condensation.

Seawer:
seawerDesigned by Sung Jin Cho of South Korea, the Seawer was inspired by another major environmental issue – the problem of waste. Every year, millions of tons of trash enter the ocean, and between 60 and 80 percent of it is from land-based sources. Due to ocean currents, this waste collects in particular areas of the world, such as the one currently located in the North Pacific Subtropical Gyre. Consisting of tiny particles of plastics, this area is commonly referred as the Great Pacific Garbage Patch (GPGP), or just “Garbage Island”.

The GPGP is twice the size of Texas and contains six times more plastic than plankton biomass. And since plastic is not biodegrade, it poses a threat to thousands of marine animals. Seawer proposes to install a huge drainage hole 550 meters in diameter and 300 meters in depth in the middle of the GPGP that would engulf all kinds of floating trash filled with seawater. Seawer consists of five layers of baleen filters, which separate particles and fluids and collected the particles together.

seawer1These collected plastics are then taken to a recycling plant atop of the structure while seawater is filtered and stored in a large sedimentation tank at the bottom to be further cleaned and released into the ocean. Much like skyscrapers that are energy-independent and turn air pollution into useable fuels, the Seawer concept is all about making a future city that can offer solutions, and placing it at the heart of the problem.

Skyvillage:
skyvillageDesigned by Ziwei Song of the United States, the Skyvillage concept was inspired by Los Angeles’s freeway system, which he claims segregates the city’s fabric and restricts urban activities to single locations. As a result, Song envisioned a vertical city that would encourage urban integration by providing a bridge over freeway interruptions and connect the four quadrants around the 101 and 110 freeways. This single architectural organism would also boost cultural exchanges, urban activities, and social interaction.

The interchange 101 and 110 breaks Los Angeles east urban fabric into four disconnected quadrants: Downtown, Chinatown, Echo Park, and Temple Beaudry. The four quadrants have distinct cultural and social differences, lacking a coherent urban tissue. Moreover, the leftover space around the freeways reaches over 27 acres. Skyvillage aims to reclaim this vague terrain and provide green filtering towers to clean the freeways and also articulate various programs to revitalize the disconnected urban fabric.

Urban Alloy Structure:
urban_alloyLast, but certainly not least, there is the design concept that was put forth this year by Matt Bowles and Chad Kellogg of the United States. Known as Urban Alloy, the concept was inspired by cities like New York and other dynamic cities of the 21st century – which they refer to as “anthropomorphic alloys”. In short, these cities act as engines for innovation and social cohesion which, combined with their continually evolving demographics, will forge the dynamic societies of the future.

Once again, the concept calls for smart growth – developments that promote innovation and renewal without disrupting current land use. Hence their proposal for a residential typology that surrounds the intersection of transportation hubs – such as elevated train lines and freeway interchanges – with a set of highly linked living environments that capture the air rights above these systems. The design and skin of the structure also reflects a blend of space types and a desire to optimized shading and day lighting.

urban_alloy2Composed of a series of different alloys and composites, the system is deployed on a grid that follows the geometric pattern of the surface. This grid is designed for integration with adjoining pieces of the structure, and to optimize shading and lighting so the building doesn’t cast a huge shadow over adjacent areas (which is a common problem for skyscrapers). The resulting architecture is a steel diagrid system that can efficiently be constructed with each unique member cut by an automated system (i.e. 3D metal printing)

The relatively light weight of each structural unit also means that it can be constructed with greater ease, cutting down on construction costs and the carbon foot involved. The wall systems are also built with a high content of recycled materials, making it a comparatively eco-friendly structure compared to most modern skyscrapers.

Summary:
An impressive collection, isn’t it? And this is not even the complete list of winners and runner-ups, just those that I felt I could squeeze in to this here humble post. Alas, it gives a pretty good idea what the great minds of the world are coming up with when they consider the needs of urban residents and cityscapes in the coming years and decades. In addition to providing housing, energy, transportation and basic services in ways that are sustainable, top marks go to those who can turn problems into solutions.

When Paolo Soleri first conceived of his Arcology concept, he was looking for a way to provide room for more people with less space, and in a way that did not further tax the environment. However, since the 1970’s, this challenge has been updated thanks to the advance of Climate Change. At this juncture, simply not adding to the problem is no longer sufficient. Future living solutions must also find ways to reduce and roll back the damage.

Hence concepts that now call for carbon capture, garbage processing, and pollution control in addition to the smart use of space, urban agriculture, and renewable energy. It is one of the paradoxes of the modern age that cities are both the cause, and solution to, the problems of modern living. While they may bring millions of people together in one place, producing tons of waste and pollution, they also bring together ideas for change and innovation that lead to better living.

In the end, ideas that expand upon this paradox – turning cities into pollution and garbage-eating factories – will not only determine the size and shape of future cities, they may very well ensure the survival of the natural environment and the human race itself. Much like all life on this planet, we remain permanently connected to space and place and are dependent on it for our livelihood and our very lives. The only way to keep living in to learn to live with it.

For more info on eVolo’s 2014 Skyscraper Competition, or to just check out some interesting design and architecture news, click on this link to go to their homepage.

Sources: fascoexist.com, (2), evolvo.us