New Articles and Apologies

solar1Let’s start with the apologies. I’m very sorry for the prolonged absence of late, and I trust that people actually noticed I haven’t been around 😉 But both my day and my side job have both been very busy and have left me mentally and physically taxed by the end of the day. However, I do have things to show for it, mainly in the form of a new list of articles that were recently published on both Universe Today and HeroX.

I’ve taken to posting the new entries on their respective pages (over on the right there). However, if you’re like me, you don’t bother to check these out much and would rather be notified if something new is happening. And the way I see it, a post now and again that contains the links to all the latest is something people won’t mind hearing about (as opposed to being notified every time one does!)

So here they are, in order of publication:

  • Small Spacecraft Ejected from ISS Will Provide Same-Day, On-Demand Delivery – Basically, the ISS is getting a small fleet of return vehicles that will allow them to deliver samples back to Earth in less than 24 hours. This will help research and experiments quite a bit, and could also open the way for commercial use of the ISS’s National Lab.
  • Make a Deal for Land on the Moon – This one was not only fun to write, it contains a cautionary tale worth sharing. No matter what some realtors may tell you, there’s absolutely no way to buy land on the Moon… yet! However, given the way that commercial aerospace and space industries are heating up, this may soon change.
  • HeroX News: The Promise of Solar Power – This is probably the longest article I’ve written for either publication of late. It deals with recent innovations that are causing solar power to break its own the efficiency limits and usher in an age of renewable energy. And none too soon either!

Climate Crisis: Solar-Powered Oasis to Feed Desert Cities

https://i2.wp.com/f.fastcompany.net/multisite_files/fastcompany/imagecache/slideshow_large/slideshow/2014/08/3034601-slide-s-6-a-solar-powered-oasis.jpgDesertification is one of the biggest threats associated with Climate Change. In places like North Africa and the Middle East, where countries already import up to 90% of their food, the spread of the desert due to increasing temperatures and diminished rainfall is made worse by the fact that cities in the region continue to grow. It’s a situation that is getting more expensive and energy-intensive at a time when things need to be getting more cost-effective and sustainable.

Luckily, a team of architects hopes to create a new agricultural system that could grow and deliver food in the desert. It’s called OAXIS, a conceptual design for a modular set of prefab greenhouses, covered in solar panels, which would extend from a city into the desert. The design of the buildings aims to keep out intense summer heat while the solar panels would power the rest of the building’s infrastructure and send extra energy back into the city.

https://i0.wp.com/a.fastcompany.net/multisite_files/fastcompany/imagecache/slideshow_large/slideshow/2014/08/3034601-slide-s-3-a-solar-powered-oasis.jpgConceived by Forward Thinking Architecture, a Barcelona-based firm, the concept seeks to combine flexibility with a minimal carbon footprint. Towards this end, they chose to forgo usual transportation and create a unique conveyor system that would deliver produce without the use of any fossil fuels. The conveyor belt would be underground so it could keep running in a straight line even if buildings were in the way.

Inside the prefab greenhouses, farmers would grow crops like tomatoes, lettuce, and strawberries using a hydroponic system that can reduce fertilizers and pesticides and save 80% of the water used in traditional agriculture, in part by recycling and reusing it. As for where the water comes from, the designers suggest that groundwater could supply the farm’s needs, but many Middle Eastern countries already rely on desalination.

https://i2.wp.com/a.fastcompany.net/multisite_files/fastcompany/imagecache/inline-large/inline/2014/08/3034601-inline-i-1-a-solar-powered-oasis.jpgIdeally, desert populations would be small enough that the region’s sparse rainfall could support local crops. But that’s not the reality. In addition, a small part of the recycled water would also be used to create an outdoor garden for education. As architect Javier Ponce, principal and founder of Forward Thinking Architecture, explained:

We thought it cannot only be a farming-only building, it must have a pedagogical approach and have to be attractive in order to become a biodiversity hub which can be visited by the local people and visitors… The cities should be smaller, denser, and compact, but this is not the current situation for some of the Arabian peninsula cities since they have exponentially grown and attract more people and workers. There has been a rapid urbanization in the area since the middle of the 20th century.

The project, he hopes, could help supply food as climate change makes the situation even more challenging. Already, countries in the worst-affected regions are desperately looking for solutions. For example, Qatar has already invested hundreds of millions in a plan to grow as much local food as possible by 2030. Other countries in the region, like Kuwait, Dubai, Abu Dhabi, Jordan, and the desert-locked Saudi Arabia are expected to follow.

https://i0.wp.com/e.fastcompany.net/multisite_files/fastcompany/imagecache/slideshow_large/slideshow/2014/08/3034601-slide-s-7-a-solar-powered-oasis.jpgThese regions in particular have felt the pressure brought on by the escalating price of importing food. This pressure is exacerbated due to the disappearance of peak oil, which accounted for the vast majority of this region’s wealth. However, the project has farther-reaching implications, as Climate Change threatens to turn much of the world’s arable land into dry, drought-ridden plains.

At the same time, it takes into account the need to reduce reliance on water and fossil-fuels. As our population continues to skyrocket, a smarter and more sustainable use of available resources are always needed. As Ponce explained:

The OAXIS project is an alternative or complementary way to respond to the food insecurity and water scarcity of the region in a self-sufficient way. It aims to help reduce the food imports to feed part of the people in a nearby future based on renewable energies.

And be sure to check out this OAXIS promotional video, courtesy of Forward Thinking Architecture:


Sources:
fastcoexist.com, forwardthinkingarchitecture

Powered by the Sun: Breakthrough Solar Cells

solar1In addition to becoming cheaper, and increasing in efficiency and yields, solar cell technology is also growing in terms of innovative design. By going beyond the conventional design of silicon panels and electrical cables, researchers are ensuring that solar technology can go farther. And the latest advances in design are especially far-sighted, aiming to merge solar technology with just about any surface, and even sending it into space.

In the former case, researchers at Michigan State University have created a fully transparent solar concentrator, which could turn any window or sheet of glass – from highrise buildings to the screens on smartphones and tablets – into a photovoltaic solar cell. And whereas other “transparent” solar panels have been designed in the past, this one is the first that truly lives up to the word.

transparent-solar-cellScientifically, a transparent solar panel is something of an oxymoron. Solar cells, specifically the photovoltaic kind, make energy by absorbing photons and converting them into electrons. If a material is transparent, by definition it means that all of the light passes through the medium. This is why previous transparent solar cells have actually only been partially transparent, and usually cast a colorful shadow.

To get around this limitation, the Michigan State researchers use a slightly different technique for gathering sunlight. Instead of trying to create a transparent photovoltaic cell, they used a transparent luminescent solar concentrator (TLSC), which consists of organic salts that absorb specific non-visible wavelengths of ultraviolet and infrared light, which they then luminesce (glow) as another wavelength of infrared light (also non-visible).

https://i0.wp.com/www.extremetech.com/wp-content/uploads/2014/08/transparent-luminescent-solar-concentrator-colorful.jpgThis emitted infrared light is guided to the edge of plastic, where thin strips of conventional photovoltaic solar cell convert it into electricity. Currently, the Michigan TLSC has an efficiency of around 1%, but they think 5% should be possible. On their own, these aren’t huge figures, but on a larger scale — every window in a house or office block — the numbers quickly add up to a significant electrical yield.

Moreover, the researchers are confident that the technology can be scaled all the way from large industrial and commercial applications, down to consumer devices, while remaining “affordable.” So far, one of the larger barriers to large-scale adoption of solar power is the intrusive and ugly nature of solar panels. But if large amounts of solar power can be produced from sheets of glass and plastic, it would go a long way to making the scaling process feasible.

solar_panel_origamiAnother major innovation comes from Brigham Young University, where researchers have been working with NASA’s Jet Propulsion Laboratory to address the challenge of Space-Based Solar Power. For some time, scientists have understood that a solar array in orbit of Earth would be ideally suited for solar power collection, since it would be immune to weather, cloud cover or diurnal cycles (aka. nighttime).

Unfortunately, getting solar cells into space is a bit of a problem. In order to be effective, solar panels need to be thin have a large surface area to soak up more rays. This makes it difficult to transport them into orbit, and requires that they be broken down,and flown up piece by piece, and then assembled once in orbit. Given the cost of mounting a sending a single rocket into orbit, this prospect becomes very costly very fast.

solar_panel_origami1However, the Brigham team came up with a simple and elegant solution to this problem, and found it in the form of origami. By working with complex origami folds, they were able to design a solar array that can shrink down to one-tenth of its original size. Folded up, the device is 2.7 meters (8.9 feet) across and can easily wrap around a spacecraft. Once it reaches space, the array would then unfold to become as wide as 25 meters (82 feet).

Given that solar panels deal with large, flat, thin structures, the origami concept seems like a natural fit. And this is not the first time that it has been used in space equipment design – in the 1990’s, Japanese astrophysicist Koryo Miura created a prototype for another folding solar panel. However, that project was abandoned for various reasons, not the least of which was lack of funding.

space-solar-headTo make the concept work and renew interest in the application, he Brigham team worked with Robert Lang, a world-renowned origami expert who also happens to be a mathematician and engineer and once worked at JPL himself. As Brian Trease, a mechanical engineer at the Jet Propulsion Laboratory, said:

He was trained as a physicist, used to work at JPL, and then got tired of the formal bureaucracy and left to start folding paper. Now he’s a world expert… We see value in going directly to any artist, even if they don’t have his credentials, because they have the thousands of hours or folding and tinkering to realize what can and can’t be done. Anytime you can bring in other disciplines, they just visualize things differently and bring in different solutions to your problems.

The new solar panels could be used to power spacecraft and potentially also on orbiting power stations that could wirelessly send energy to Earth via microwaves. A similar design could also be used on Earth to provide new options for portable solar power in remote locations. The same type of design might also be used in architecture or product design because of its unusual looks and function.

NASA_suntowerAccording to Trease, the Department of Defense has already been in touch with them regarding applications for soldiers in the field:

Soldiers right now might carry around 100 pounds, 15 of those pounds are batteries and fuel. If you can eliminate that, you’ve dramatically reduced their load… It’s different from opening an umbrella, because it can accommodate rigid material. You could do something like a deployable glass chandelier or a table. When it’s deployed, it looks like a flower blooming–it’s got a nice aesthetic to it.

In the next few weeks, Trease will also meet with other experts to consider different potential applications for space equipment, like antennas and reflectors, that could also deploy using origami. And given the rapidly-dropping prices associated with placing objects into orbit, this could prove to be the basis for the dream of Space-Based Solar Power – where all our energy needs are met by solar arrays in orbit that then beam them to Earth.

 

Source: extremetech.com, fastcoexist.com

Towards a Cleaner Future: Denmark’s Wind Power

wind-power-660Denmark made a recent and very positive announcement. According to Denmark’s Energy Association, wind power is now the cheapest source of energy, beating coal, fossil fuels, and natural gas. What’s more, the government agency claims that by 2016, the electricity whipped up by its newest turbines will be half the price of conventional means. The announcement came in the last week of July, and is raising hopes for clean energy around the world.

For years, wind and solar have been achieving grid parity with fossil fuels in many places around the world, meaning they are just as cheap. But even without the tax breaks, declining manufacturing costs and growing scale have rendered wind power just as cheap as natural gas in many states in the gas-rich US. And as Deutsche Bank analyst Vishal Shah claims, this is the “beginning of the grid parity era” for solar, worldwide.

solar_array1As he explains it, demand is being driven by “sustainable” markets – meaning the US, China, and regions outside of Europe – with Japan leading the way with an estimated 7 GW annual demand:

Solar is currently competitive without subsidies in 10+ major markets globally, and has the potential to achieve competitiveness in 10-20 additional markets over the next 3 years.

China, which plans to add 10 GW of solar capacity this year alone, only added “in the 2-3 GW range” during the first half of 2013, which would suggest a vast expansion is coming in the second half of the year. Emerging markets are likely to adopt unsubsidized policy models to promote solar growth, especially if new low-cost capital becomes available in concert with policy support to reduce costs.

denmark_windBut Denmark is blowing past grid parity and towards a scenario in which clean energy is actually much, much cheaper. According to analysts, when its two massive offshore wind farms come online, they’ll be the nation’s most inexpensive energy source by a wide margin. As Yale 360, an environmental policy group centered at the Yale School of Forestry & Environmental Studies, explains:

Electricity from two new onshore wind power facilities set to begin operating in 2016 will cost around 5 euro cents per kilowatt-hour. Wind power would remain the cheapest energy option even if interest rates on wind power projects were to increase by 10 percent, the report found.

This is good news for a nation that’s hoping to get 50 percent of its power from wind turbines by 2050. Right now, the nation already boasts an impressive clean energy mix of 43 percent. And Rasmus Peterson, Denmark’s energy minister, said at a press conference:

Wind power today is cheaper than other forms of energy, not least because of a big commitment and professionalism in the field. This is true for researchers, companies and politicians. We need a long-term and stable energy policy to ensure that renewable energy, both today and in the future, is the obvious choice.

airpollution1Importantly, the DEA’s analysis did not factor in the health and environmental costs of burning fossil fuels—which are considerable—and instead looked directly at the market forces in the country. Natural gas and coal are much more expensive in Denmark than it is in the US, which helps make wind such an economic bargain, and the nation has explicitly pursued wind power for decades.

But improving technology, falling costs, and the strong, consistently blowing offshore winds that will turn the new turbines are making the case for wind power rock solid. At the end of July, it was revealed that Germany gets a full 28.5 percent of its energy needs with clean sources. Now Denmark is proving that running your nation on clean energy can be cheaper anyone thought possible, even ten years ago.

Sources: motherboard.vice.com, renewableenergyworld.com, e360.yale.edu

 

Powered by the Sun: The “Energy Duck”

Magnificent CME Erupts on the Sun - August 31Part of the challenge of paving the way towards a future where solar power is able to meet our energy needs is finding ways to integrate it into our daily lives. Basically, until such time as efficiency limits, storage and intermittency problems are truly overcome, one of the best ways to do this is to place photovoltaic arrays where the demand is highest and to get creative with how they collect it.

For example, a group of British artists have conceptualized a giant solar harvesting floating duck as part of the 2014 Land Art Generator Initiative Copenhagen design competition. Dubbed “Energy Duck”, the giant structure has been designed not only to generate clean electricity for the local residents of Copenhagen, but to also provide a unique visitor center. In short, it comes renewable energy with a cautionary message about the effects of Climate Change.

energyduckInspired by the arctic eider duck, Energy Duck not only hopes to offer a unique renewable energy source, but also highlight the impact that climate change has had on the local population and breeding habitats of the eider duck in recent years. As its creators – Hareth Pochee, Adam Khan, Louis Leger and Patrick Fryer – explained:

Energy Duck is an entertaining iconic sculpture, a renewable energy generator, a habitable tourist destination and a celebration of local wildlife.

Covered in photovoltaic panels, the Energy Duck is designed to harvest solar energy from every inch of its exterior shell. Solar cells mounted around the base are also positioned to take advantage of the sun’s rays being reflected off the water’s surface. Additionally, the facility features hydro turbines which use water pressure to provide stored energy to the grid after sunset and during the evening.

https://i0.wp.com/images.gizmag.com/gallery_lrg/energyduck-2.jpgAll of this helps the Energy Duck overcome the all-important issue of intermittency. By being able to generate energy around the clock, the Duck is not dependent on the sun shining in order to continue operating and providing power. As the team explained:

When stored energy needs to be delivered, the duck is flooded through one or more hydro turbines to generate electricity, which is transmitted to the national grid by the same route as the PV panel-generated electricity. Solar energy is later used to pump the water back out of the duck, and buoyancy brings it to the surface. The floating height of the duck indicates the relative cost of electricity as a function of city-wide use: as demand peaks the duck sinks.

Inside the giant Energy Duck, visitors can get a unique look into the working mechanics of the hydro turbines, watching as the water levels rise and fall. Sunlight also filters through small spaces between the exterior solar panels, providing a kaleidoscope-like view of Copenhagen. However, another interesting feature about the Energy Duck is its environmental message.

energyduck-5So while people are visiting the interior and taking note of the impressive technology, they will also be getting a lesson in why it is important. And really, the inherent message of the concept is really very appropriate. A clean, renewable, alternative energy source designed to look like, and inspired by, one of the many creatures that is endangered because of humanity’s dependence on unclean fuels.

Now if we could just design a land-roving solar farm in the shape of a polar bear!

Sources: gizmag.com, inhabitat.com

Towards a Clearner Future: World’s Largest Renewables Projects

jaguar-solar-arrayThanks to increasing efficiency in solar panels, as well as dropping costs for manufacture and installation, generating renewable electricity at home or in commercial  buildings is becoming increasingly viable. And this fast-growing trend has been manifesting itself in an impressive list of “world’s largest” projects, with government and industry pairing to make renewable energy a major power source.

For example, back in January, the world’s largest solar bridge was completed in London on the Blackfriars Bridge. As part of Blackfriars Station in London, the bridge was fitted with 4,400 photovoltaic panels between 2009 and 2014 – which are expected to reduce the station’s CO2 emissions by an estimated 511 tonnes (563 tons) per year. Considering London’s issues with air quality and mass transit, this is a major step towards sustainability.

ivanpah-1Then in February, the Ivanpah Solar Electric Generating System (ISEGS) – the world’s largest solar-thermal plant – became fully operational in the Mojave Desert in southeastern California. The 392 MW plant, which was developed with funding from NRG Energy, Google, and BrightSource Energy, is expected to generate enough electricity to power 140,000 homes, each year.

And in April, Jaguar joined Audi, Ferrari and Renault by installing fields of solar panels on top of its new Engine Manufacturing Center in South Staffordshire. This solar field is now the largest rooftop array in the UK, comprising over 21,000 photovoltaic panels and a capacity of 5.8 MW. Jaguar estimates the installation will meet more than 30 percent of the centers energy needs and reduce the plant’s CO2 footprint by over 2,400 tonnes (2,645.5 tons) per year.

windstream-wind-solar-hybrid-jamaicaAnd now, Windstream Technologies – a commercial wind and sun generating firm aimed at bringing renewable energy to municipalities, commercial buildings and homes -has installed what it says is the world’s largest wind-solar hybrid array on the roof of the Myers, Fletcher, & Gordon (MFG) lawfirm in Kingston, Jamaica. The array is expected to generate over 106,000 kWh annually and demonstrates the ability to maximize energy production with limited roof space.

MFG’s installation is a part of an effort by Jamaica’s sole energy provider, Jamaica Public Service, to make the capability for producing renewable energy for its approximately one-million citizens more widely available. The array is expected to generate 25kW of wind power and 55kW of solar power, and the electricity generated can either be used, stored off-grid or fed back into the grid.

windstream-wind-solar-hybrid-jamaica-3The installation incorporates 50 of WindStream’s SolarMill devices, with each different model comprising one or more solar panel and three or more turbines. This is to ensure that the daily and seasonal trends of wind and solar resources are all mitigated by capturing both at any time of the day or year. Windstream says it will return its investment within four years and will produce savings of around US$2 million over the course of its estimated 25-year lifespan.

Merging solar, wind and other renewable technologies into communities, commercial spaces and housing is not only a means of cutting emissions and utility bills, it is also a way to tackle two of renewable energy’s greatest stumbling blocks. These are the problems of storage and intermittency – generating energy when it’s needed and getting it to where it’s needed.

And be sure to check out this video of the rooftop array from Windstream Technologies:


Sources:
gizmag.com, (2), nrg.com, networkrailmediacentre.co.uk

The Future of Disaster Relief: The Ecos PowerCube

EcosPowerCube-640x353One of the greatest challenges to humanitarian aid and disaster relief is the task of getting services to where they needed the most. Whether it’s hurricanes, earthquakes, mudslides, or wildfires; getting electricity, water, and other utilities up and running again is a tough task. And with every moment that these services are not available, people are likely to die and humanitarian crises ensue.

However, Ecosphere Technologies – a diversified water engineering and environmental services company – believes it’s designed a solution in the form of their new PowerCube. This self-contained, mobile apparatus is designed to deliver solar power to off-grid areas along with water purification facilities and WiFi base stations — all in a single package that is the size of a shipping container.

https://i2.wp.com/www.extremetech.com/wp-content/uploads/2014/06/disaster-lg-1.jpgThe Ecos PowerCube will be available in three sizes that are designed to fit into 10-foot, 20-foot, and 40-foot shipping containers. The largest models will be capable of generating up to 15kW of power, which will be parceled between providing electrical hook-ups, water treatment and internet access. And they will also serve as temporary shelters, providing temporary sleeping quarters or medical stations.

What is especially innovative about the design is the use of fold-out solar panels, which allow for significant power generation without compromising on the handy space-saving form. Deployed, the Cube is able to maximize its solar-absorbing surface area; but packed up, its small enough to fit into a shipping container and be deployed around the world. However, the design also comes with its share of drawbacks.

powercube-howFirst, there’s the apparent lack of batteries, which means the Cubes will only be able to provide power while the sun is shining. This is crucial since time is often of the essence in disaster areas, with windows for treating wounds and rescuing the buried and trapped lasting typically less than three days. Second, the 15kW generator is rather meager compared to what a diesel generator can produce – between 600kW and 1.7MW.

This means, in essence, that some twenty or so PowerCubes would have to be shipping to a disaster area to equal the electrical capacity of a single large diesel generator. And the intermittency problem is certainly an issue for the time being, unless they are prepared to equip them with high-capacity batteries that can quickly absorb and hold a charge (some graphene or integrated Li-ion batteries should do it).

https://i1.wp.com/www.extremetech.com/wp-content/uploads/2014/06/military-lg-2.jpgIn the meantime, it is still a crafty idea, and one which has serious potential. Not only do disaster areas need on-site water distribution – shipping it in can be difficult and time consuming – but internet access is also very useful to rescue crews that need up-to-date information, updates, and the ability to coordinate their rescue efforts. And military installations could certainly use the inventions, as they would cut down on fuel consumption.

Still, refinements will need to be made before this is a one-fit solution problem of what to do about disaster relief and fostering development in densely populated areas of the world where things like water-treatment, electricity, and internet access is not readily available.

Source: extremetech.com, ecospheretech.com