The Future of Urban Planning: The Urban Skyfarm

urban-skyfarm-9The world’s population is projected to grow to between 9 and 10 billion people by the middle of the century. What’s more, roughly two-thirds of those people are expected to live in major cities. Coupled with the expected changes caused by Climate Change (i.e. increased drought and less in the way of arable land), and its understandable why urban farms are seen as a means of picking up the slack.

That’s the concept behind the Urban Skyfarm, a concept for a skyscraper that is shaped like a tree and comes with leaf-like decks to provide space for real trees to grow. Currently, most vertical farming operations – like warehouses in Chicago, Kyoto, Singapore and a recent skyscraper built in Sweden by Plantagon – grow plants with ultra-high-efficiency systems under artificial light.

urban-skyfarm-2However, this new design concept from Aprilli Design Studio takes a different approach, using lightweight decks to provide growing space outdoors on the sides of a giant skyscraper. The architects aren’t the first to embrace the trend of sticking greenery on towers, but they may be one of the first to look at how to use the technique to maximize food production. As architects Steve Lee and See Yoon Park explained:

Our version of the vertical farm was intended to become an independent, open-to-air structure which would be purely focusing on farming activities and sustainable functions such as generating renewable energy and performing air, and water filtration.

Designed to mimic the shape of an enormous tree, the Urban Skyfarm uses leaf-like decks to provide 24 acres of space for growing fruit trees and plants. The “trunk” houses an indoor hydroponic farm for greens, and solar panels and wind turbines at the top of the tower provide enough energy to power the whole operation. The design would also capture rainwater and filter it through a constructed wetland before returning it to a nearby stream.

urban-skyfarm-5So in addition to growing food and using rainwater to provide irrigation, the building also was also designed with an eye towards energy independence. The architects envision the project in the middle of downtown Seoul, South Korea:

It seemed to be an ideal place to test out our prototype since the specific area is very dense and highly active and has been suffering for a long time by all sorts of environmental problems resulting from rapid urbanization…With the support of hydroponic farming technology, the space could efficiently host more than 5,000 fruit trees. Vertical farming is more than an issue of economical feasibility, since it can provide more trees than average urban parks, helping resolve urban environmental issues such as air pollution, water run-off and heat island effects, and bringing back balance to the urban ecology.

The design would also provide community gardens, park space, and a farmers market to cater to a demand for fresh, local food in a city where apples can cost more than $20 at local markets.

urban-skyfarm-7Vertical farming has already started in South Korea. Another project, based in Suwon, is growing food in a three-story building and may eventually expand into a skyscraper. But the outdoor vertical farm is just a concept for now. Lee and Park are confident this is the way of the future, and that demand for clean, sustainable buildings that grow fresh food is only going to increase:

We believe there will be more attention and discussions of vertical farms as the 2015 Milan Expo approaches, and we hope the Urban Skyfarm can become part of the discussion as a prototype proposal. Vertical farming really is not only a great solution to future food shortage problems but a great strategy to address many environmental problems resulting from urbanization.

And with the problems of urban growth and diminished farmland occurring all over the developed world – but especially in nations like China, Indonesia, the Philippines, and India (which are likely to be the hardest hit by Climate Change) – innovative designs that combine sustainability and urban farming are likely to become all the rage all over the world.

Source: fastcoexist.com

The Future of Medicine: AR Treats Phantom Limb Pain

AR_plpStudies have shown that a good deal of amputees feel pain in their lost limbs, a condition known as Phantom Limb Pain (PLP). The condition is caused when the part of brain responsible for a limb’s movement becomes idle, and thus far has very difficult to treat. But a new study suggests therapy involving augmented reality and gaming could stimulate these unused areas of the brain, resulting in a significant reduction in discomfort.

Previous attempts to ease PLP by replicating sensory feedback from an artificial hand have included prosthetics and a treatment known as mirror therapy, where a reflection of the patient’s remaining limb is used to replace the phantom limb. Virtual reality systems have resulted in more sophisticated mirror therapy, but the approach is only useful for the treatment of one-sided amputees.

Mirror TherapyA research team from Sweden’s Chalmers University of Technology sought to overcome this and achieve greater levels of relief by testing a treatment where the virtual limb would be controlled through myoelectric activity. This is a process where the muscle signals which would control the phantom limb at the stump are detected and then used to create a pattern that will predict the limb’s movements and provide the requisite stimulation.

To test the treatment, the researchers connected amputee Ture Johanson – a man who have lived with PLP for 48 years – to a computer. Electrodes running from his stump to the machine provided the input signals, and on the computer screen, he was able to see and move a superimposed virtual arm. The electronic signals from his arm communicated to the computer and his movements were simulated before his very eyes, and then used to control a car in a racing game.

plp-augmented-realityWithin weeks of starting this augmented reality treatment in Max Ortiz Catalan’s clinic at Chalmers, his found his pain easing and even disappearing entirely. Mr Johanson says he has noticed other benefits, like how perceives his phantom hand to be in a resting, relaxed position rather than constantly a clenched fist:

The pain is much less now. I still have it often but it is shorter, for only a few seconds where before it was for minutes. And I now feel it only in my little finger and the top of my ring finger. Before it was from my wrist to my little finger… Can you imagine? For 48 years my hand was in a fist but after some weeks with this training I found that it was different. It was relaxed. It had opened.

Mr Johanson has also learned to control the movements of his phantom hand even when he is not wired up to the computer or watching the virtual limb.

AR_plp1Max Ortiz Catalan, the brains behind the new treatment, says giving the muscles a work-out while being able to watch the actions carried out may be key to the therapy. Catalan says it could also be used as a rehabilitation aid for people who have had a stroke or those with spinal cord injuries. As he put it:

The motor areas in the brain needed for movement of the amputated arm are reactivated, and the patient obtains visual feedback that tricks the brain into believing there is an arm executing such motor commands. He experiences himself as a whole, with the amputated arm back in place.

While he and his team points out that its research is based on the study of only one patient, the success in achieving pain relief following a series of unsuccessful treatments is a clear sign of efficacy and should lead to equally successful results in other test cases. Their research appeared in a recent issue of Frontiers in Neuroscience titled “Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient”.

Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient – See more at: http://journal.frontiersin.org/Journal/10.3389/fnins.2014.00024/full#sthash.BRadRPRS.dpuf
Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient – See more at: http://journal.frontiersin.org/Journal/10.3389/fnins.2014.00024/full#sthash.BRadRPRS.dpuf
Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient – See more at: http://journal.frontiersin.org/Journal/10.3389/fnins.2014.00024/full#sthash.BRadRPRS.dpuf

And in the meantime, be sure to check out this video of the therapy being demonstrated:


Source: gizmag.com, bbc.com, journal.frontiersin.org

The Future is Here: Brain Scanning for Pets!

Up_Doug_talkingdogRemember that scene in the Disney Pixar’s Up, where the old man and the little boy discover a dog who, thanks to a special collar, is able to talk to them? As it stands, that movie may have proven to be more prophetic than anyone would have thought. Thanks to improvements in wearable tech and affordable EEG monitors, it may finally be possible to read your dog’s mind and translate it into speech.

This is not the first case of commercial technology being used to monitor an animal’s habits. In recent years, wearable devices have been made available that an track the exercise, sleeping and eating patterns of a dog. But now, thanks to EEG devices like the “No More Woof”, it might be possible to track their thoughts, learning exactly what they think of that new couch, their new dry food, or the neighbors cat.

Woof_no_more1Tomas Mazzetti, the devices inventor, came up with the idea after he got as to what would happen if he strapped an off-the-shelf EEG machine to his mother’s Australian terrier. The observations that followed inspired the launch of a new project for Mazzetti and his team of fellow creatives at the Nordic Society for Invention and Discovery.

This society – which represents a collaboration between the ad agency Studio Total and Swedish retailer MiCasa – has spawned a number of quirky products in the past. These include a rocking chair that charges your iPad, a weather forecasting lamp, and a levitating carpet for small-ish pets. No More Woof is the society’s latest work, and the team recently launched an Indiegogo campaign to raise more funding for research.

Woof_no_moreSo far, Mazzetti and his team have been able to determine three baseline dog emotions to translate into speech: sleepiness, agitation, and curiosity. In time, they hope to be able to decipher hunger pangs as processed by a dog’s brain, and come up with appropriate verbalizations for all:

When the dog is sleepy, we translate to ‘I’m tired.’ And if they are really agitated, we can translate to ‘I’m excited!’ And the most active brainwave is when the dog sees a human face and tries to recognize that face. Then the brain is working overtime.

Mazzetti and the NSID are also working on finding cheaper EEG machines, after which they can fine-tune the software. They’ve done tests on roughly 20 dogs, of which they found that short-haired pets were able to communicate with the EEG machine better. If NSID receives more funding, its researchers hope to have something for sale by March or April of next year.

Brainwave-Frequency-ChartBut while Mazzetti’s primary goal is to produce something commercially viable for use with dogs, he’s also hopeful that other research institutions or retailers will pick up where NSID leaves off. For example, what thoughts could be translated if someone were to put a more sophisticated version of No More Woof on the head of a primate, or another highly intelligent mammal?

Looking even further afield, Mazzetti has suggested that such a device could work both ways, translating human speech into concepts that a dog (or other animal) could understand. As we all know, dogs are very good at learning verbal commands, but again, the idea of two-way communication offers possibilities to convey complex messages with other, more highly-intelligent animals.

humpbackCould it be possible someday to communicate with simians without the need for sign language, to commune openly with dolphins and Orcas, or warn Humpbacks about the impending dangers of whalers and deep sea fishers? Perhaps, and it would certainly be to the benefit of all. Not only would we be able to get our mammalian brethren to better understand us, we might just learn something ourselves!

After all, the line that separates humanity from all other species is a rather fine one, and tends to blur to closer we inspect it. By being able to commune with other species in a way that can circumvent “language barriers”, we might just learn that we have more in common than we think, and aren’t such a big, screaming deal after all.

And in the meantime, enjoy this video of the No More Woof in action:


And be sure to check out this clip from Up where Doug (the talking dog) is introduced, with hilarious results!

The Future is Here: The Electric Highway!

electric_carCharging electronic vehicles while they on the move is not a new idea. In fact, in Vancouver, BC, the entire public transit system runs on a series of electronic lines that power the buses. And in French cities, the entire tram system runs on a wireless system, one which is six million kilometers in length. In the former case, the buses are kept in contact with power lines overhead, while the latter uses metal bars running underneath.

Applying the same concept, Volvo has designed a new highway system in Sweden that will keep electric cars running on long-distance trips. Led by Mats Alaküla, researchers are looking at these types of “conductive charging,” both where vehicles would stay in continuous contact with the power supply. Both methods are being tested on the new system, which consists of a 400-meter track near Gothenburg.

volvo_highwayBehind the research is the assumption that an electric car’s batteries will not provide the required range for long-distance driving, especially where long-haul trucks are concerned. City driving is one thing, but in order for electric vehicles to expand beyond urban centers, bigger and better methods need to be devised.

Alaküla says the important part of the second system is “the pick-up” – i.e. the connector between the vehicle and the ground. Unlike trams that stay in a fixed position, this line needs to be able to compensate for cars and trucks changing lanes. He describes the set-up as an “industrial robot sitting upside down”, though it more akin to a robotic arm.

volvo_highway1The arm moves a meter each way to compensate for movement within the lane, and retracts when the driver changes lanes, redeploying once they’ve back on the track. As Alaküla describes it:

If you imagine two lanes, the power system would be in the right lane. The pick-up keeps in contact with the supply, until you keep moving sideways. Then, the truck will go to the battery. When you go back, it automatically identifies the track, and reconnects.

And for those who worry that electric tracks are going to make highways unsafe for pedestrians, Alaküla insisted that the system only electrifies sections of the track when vehicles pass at a certain speed. To electrocute yourself, a pedestrian would need to step out in front of a fast-moving vehicle, which would kind of render the whole thing moot!

electric-highwaySo far, trucks have been able to get up to speeds of 80 km/h (50 mph) on the Volvo stretch, and Alaküla expects the work to continue for another year before his team takes the concept to a full road. Eventually, he thinks the concept could be used for anything bigger than a motor-bike – from cars and buses to different types of trucks.

And they not alone in their research efforts. Volvo’s rival Scania are themselves testing technology based on inductive charging where the charge is transferred via an electromagnetic field and does not require physical contact. Between these three methods and other emerging technologies that seek to make highway driving “smart”, the future of long-distant driving is likely to become a much cleaner, more efficient affair.

Source: fastcoexist.com