Scientists and astronomers have learned a great deal about the universe in recent years, thanks to craft like the Kepler space probe and the recently launched Gaian space observatory. As these and other instruments look out into the universe and uncover stars and exoplanets, it not only lets us expand our knowledge of the universe, but gives us a chance to reflect upon the meaning of this thing we call “habitability”.
Basically, our notions of what constitutes a habitable environment are shaped by our own. Since Earth is a life-sustaining environment from which we originated, we tend to think that conditions on another life-giving planet would have to be similar. However, scientists René Heller and John Armstrong contend that there might be a planet even more suitable in this galaxy, and in the neighboring system of Alpha Centauri B.
For those unfamiliar, Alpha Centauri A/B is a triple star system some 4.3 light years away from Earth, making it the closest star system to Earth. The nice thing about having a hypothetical “superhabitable” planet in this system is that it makes it a lot easier to indulge in a bit of a thought experiment, and will make it that much more easy to observe and examine.
According to the arguments put forward by Heller, of the Department of Physics and Astronomy, McMaster University, Hamilton; and Armstrong, of the Department of Physics, Weber State University in Ogden, this planet may be even more suitable for supporting life than our own. It all comes down to meeting the particulars, and maybe even exceeding them.
For example, a habitable planet needs the right kind sun – one that has existed and remained stable for a long time. If the sun in question is too large, then it will have a very short life; and if it’s too small, it might last a long time. But the planet will have to be very close to stay warm and that can cause all sorts of problems, such as a tidally locked planet with one side constantly facing the sun.
Our own sun is a G2-type star, which means it has been alive and stable for roughly 4.6 billion years. However, K-type dwarfs, which are smaller than the Sun, have lives longer than the age of the universe. Alpha Centauri B is specifically a K1V-type star that fits the bill with an estimated age of between 4.85 and 8.9 billion years, and is already known to have an Earth-like planet called Alpha Centauri B b.
As to the superhabitable planet, assuming it exists, it will be located somewhere between 0.5 and 1.4 astronomical units (46 – 130 million mi, 75 – 209 million km) from Alpha Centauri B. All things being equal, it will have a circular orbit 1. 85 AU (276 million km / 172 million miles) away, which would place it in the middle of the star’s habitable zone.
Also, for a planet to sustain life it has to be geologically active, meaning it has to have a rotating molten core to generate a magnetic field to ward off cosmic radiation and protect the atmosphere from being stripped away by solar winds. A slightly more massive planet with more gravity means more tectonic activity, so a better magnetic field and a more stable climate.
However, the most striking difference between the superhabitable world and Earth would be that the former would lack our continents and deep oceans – both of which can be hostile to life. Instead, Heller and Armstrong see a world with less water than ours, which would help to avoid both a runaway greenhouse effect and a snowball planet that an overabundance of water can trigger.
Our superhabitable planet might not even be in the habitable zone. It could be a moon of some giant planet further away. Jupiter’s moon Io is a volcanic hellhole due to tidal heating, but a larger moon that Heller and Armstrong call a “Super Europa” in the right orbit around a gas giant could heat enough to support life even if it’s technically outside the star’s habitable zone.
According to Heller and Armstrong, this world would look significantly different from our own. It would be an older world, larger and more rugged, and would provide more places for life to exist. What water there was would be evenly scattered across the surface in the form of lakes and small, shallow seas. And, it would also be slightly more massive, which would mean more gravity.
This way, the shallow waters would hold much larger populations of more diverse life than is found on Earth, while the temperatures would be more moderated. However, it would be a warmer world than Earth, which also makes for more diversity and potentially more oxygen, which the higher gravity would help with by allowing the planet to better retain its atmosphere.
Another point made by Heller and Armstrong is that there may be more than one habitable planet in the Alpha Centauri B system. Cosmic bombardments early in the history of the Solar System is how the Earth got its water and minerals. If life had already emerged on one planet in the early history of the Alpha Centauri B system, then the bombardment might have spread it to other worlds.
But of course, this is all theoretical. Such a planet may or may not exist, and may or may not have triggered the emergence of life on other worlds within the system. But what is exciting about it is just how plausible its existence may prove to be, and how easy it will be to verify once we can get some space probes between here and there.
Just imagine the sheer awesomeness of being able to see it, the images of a super-sized Earth-moon beamed back across light years, letting us know that there is indeed life on worlds besides our own. Now imagine being able to study that life and learning that our conceptions of this too have been limited. What a time that will be! I hope we all live to see it…
Since the Wright Brothers developed the world’s first airplane, scientists and aerospace engineers have understood how important airflaps and wing design are to ensuring that a plane is able to achieve lift and land safely. During and after World War II, additional lessons were learned, where the sweep of a wing was found to be central to a plane achieving higher service ceilings and air speed velocities.
Since that time, many notable improvements have been made, but some strictures have remained the same. For example, conventional wings suffer from the problem of being fixed in a single position, which makes some aspects of performance possible but other things extremely difficult. In addition, flaps have remained virtually unchanged over the years, relying on hinged joints that are limited and vulnerable.
In both cases, the answer may lie in flexible and seamless materials, leading to wings that can change shape as needed. Such technology could not only enable better performance, but remove the need for hinges and gears. Towards this end, Michigan-based FlexSys has developed a way to optimize wing aerodynamics with FlexFoil, a seamless variable geometry airfoil system.
In development since 2001, FlexFoil is made from what is described only as “aerospace materials,” and is seamlessly integrated into the trailing edge of the wing. Based on a technology known as “distributed compliance,” the morphing structure integrates actuators and sensors that, according to Flexsys, results in “large deformations in shape morphing with very small strains.”
According to a 2006 paper co-written by mechanical engineer Dr. Sridhar Kota (the FlexFoil’s inventor), the foils are:
optimized to resist deflection under significant external aerodynamic loading and are just as stiff and strong as a conventional flap.
What this translates to in real terms is a tolerance of over 4500 kg (10,000 lbs) in air loads and the ability to distribute pressure more evenly throughout the wing, resulting in less strain in any one area. It is also said to reduce wind noise by up to 40 percent on landing, and to lessen build-up of both ice and debris.But the biggest benefit comes in terms of fuel economy.
When retrofitted onto a wing, FlexFoil can reduce fuel consumption by a claimed 4 to 8 percent, with that number climbing to 12 percent for those wings that are built are the system. What’s more, the technology could be applied to anything that moves relative to a fluid medium, including things like helicopter rotor blades, wind turbine blades, boat rudders, or pump impellers.
FlexFoil was officially introduced to the public this week at the AIAA (American Institute of Aeronautics and Astronautics) SciTech exposition in Washington, DC. Plans call for flight tests to be performed this July at NASA’s Dryden Flight Research Center, where the flaps of a Gulfstream business jet will be replaced with the foils.
Check out this video of the airwing design and what it does here:
To be fair, this is not the only case of flexible, morphing aircraft in development right now. In fact, NASA has been looking to create a morphing aircraft concept ever since 2001. So far, this has included collaborating with Boeing and the U.S. Air Force to create the Active Aeroelastic Wing (AAW) which was fitted to the F/A-18 Hornet, a multirole combat jet in use with the USAF.
But looking long-term, NASA hopes to create a design for a morphing airplane (pictured above). Known as the 21st Century Aerospace Vehicle, and sometimes nicknamed the Morphing Airplane, the concept includes a variety of smart technologies that could enable inflight configuration changes for optimum flight characteristics, and is an example of biomimetic technology.
In this case, the biological design being mimicked is that of a bird. Through the use of smart materials that are flexible and can change their shape on command, the 21st Century Aerospace Vehicle is able to shape its wings by extending the tips out and slightly upward to give it optimal lift capability. In this configuration, the inspiration for the aircraft’s wings is most clear (pictured above).
But once airborne, the aircraft needs a wing that is capable of producing less wind resistance while still maintaining lift. This is why the wings, upon reaching and service ceilings in excess of 3000 meters (10,000 feet), the wings then contract inward and sweep back to minimize drag and increase airspeed velocity.
Though this program has yet to bear fruit, it is an exciting proposal, and provides a glimpse of the future.
Be sure to check out NASA’s video of the CAV too, and keep your eyes on the skies. Chances are, jets that utilize smart, morphing surfaces are going to be there soon!
Gauging what life will be like down the road based on the emerging trends of today is something that scientists and speculative minds have been doing since the beginning of time. But given the rapid pace of change in the last century – and the way that it continues to accelerate – predicting future trends has become something of a virtual necessity today.
And the possibilities that are expected for the next generation are both awe-inspiring and cause for concern. On the one hand, several keen innovations are expected to become the norm in terms of transportation, education, health care and consumer trends. On the other, the growing problems of overpopulation, urbanization and Climate Change are likely to force some serious changes.
Having read through quite a bit of material lately that comes from design firms, laboratories, and grant funds that seek to award innovation, I decided to do a post that would take a look at how life is expected to change in the coming decades, based on what we are seeing at work today. So here we go, enjoy the ride, and remember to tip the driver!
Housing: When it comes to designing the cities of the future – where roughly 5 of the worlds 8.25 billion people are going to live – meeting the basic needs of all these folks is complicated by the need to meet them in a sustainable way. Luckily, people all across the world are coming together to propose solutions to this problem, ranging from the small and crafty to the big and audacious.
Consider that buildings of the future could be coated with Smart Paint, a form of pigment that allows people to change the color of their domicile simply by pushing a button. Utilizing nano-particles that rearrange themselves to absorb a different part of the spectrum, the paint is able to reflect whatever wavelength of visible light the user desires, becoming that color and removing the need for new coats of paint.
And consider that apartments and houses in this day could be lighted by units that convert waste light energy from their light bulbs back into functional ambient light. This is the idea behind the Trap Light, a lamp that comes equipped with photoluminescent pigments embedded directly into the glass body. Through this process, 30 minutes of light from an incandescent or LED light bulb provides a few hours of ambient lighting.
And in this kind of city, the use of space and resources has come to be very efficient, mainly because it has had to. In terms of low-rent housing, designs like the Warsaw-inspired Keret House are very popular, a narrow, 14-sqaure meter home that still manages to fit a bathroom, kitchen and bedroom. Being so narrow, city planners are able to squeeze these into the gaps between older buildings, its walls and floors snapping together like Lego.
When it comes to other, larger domiciles (like houses and apartment blocks), construction is likely to become a much more speedy and efficient process – relying on the tools of Computer-Assisted Design (CAD) and digital fabrication (aka. the D-process). Basically, the entire fabrication process is plotted in advance on computer, and then the pieces are tailor made in the factory and snapped together on site.
And lets not forget anti-gravity 3-D printing as a means of urban assembly, as proposed by architecture students from the Joris Laarman Lab in Amsterdam. Using quick-hardening materials and dispensed by robot-driven printers, entire apartment blocks – from electronic components to entire sections of wall – within a few days time. Speedier, safer and more efficient than traditional construction.
Within these buildings, water is recycled and treated, with grey water used to fertilize crops that are grown in house. Using all available spaces – dedicated green spaces, vertical agriculture, and “victory gardens” on balconies – residents are able to grow their own fruits and vegetables. And household 3-D food printers will dispense tailor-made treats, from protein-rich snacks and carb crackers to chocolate and cakes.
And of course, with advances in smart home technology, you can expect that your appliances, thermostat, and display devices will all be predictive and able to anticipate your needs for the day. What’s more, they will all be networked and connected to you via a smartphone or some other such device, which by 2030, is likely to take the form of a smartwatch, smartring or smartbracelet.
Speaking of which…
Smart Devices and Appliances:
When it comes to living in the coming decades, the devices we use to manage our everyday lives and needs will have evolved somewhat. 3-D printing is likely to be an intrinsic part of this, manufacturing everything from food to consumer products. And when it comes to scanning things for the sake of printing them, generating goods on demand, handheld scanners are likely to become all the rage.
That’s where devices like the Mo.Mo. (pictured above) will come into play. According to Futurist Forum, this molecular scanning device scans objects around your house, tells you what materials they’re made from, and whether they can be re-created with a 3-D printer. Personal, household printers are also likely to be the norm, with subscriptions to open-source software sites leading to on-demand household manufacturing.
And, as already mentioned, everything in the home and workplace is likely to be connected to your person through a smart device or embedded chips. Consistent with the concept of the “Internet of Things”, all devices are likely to be able to communicate with you and let you know where they are in real time. To put that in perspective, imagine SIRI speaking to you in the form of your car keys, telling you they are under the couch.
Telepresence, teleconferencing and touchscreens made out of every surface are also likely to have a profound effect. When a person wakes in the morning, the mirror on the wall will have displays telling them the date, time, temperature, and any messages and emails they received during the night. When they are in the shower, the wall could comforting images while music plays. This video from Corning Glass illustrates quite well:
And the current range of tablets, phablets and smartphones are likely to be giving way to flexible, transparent, and ultralight/ultrathin handhelds and wearables that use projection and holographic technology. These will allow a person to type, watch video, or just interface with cyberspace using augmented reality instead of physical objects (like a mouse or keyboard).
And devices which can convert, changing from a smartphone to a tablet to a smartwatch (and maybe even glasses) are another predicted convenience. Relying on nanofabrication technology, Active-Matrix Organic Light-Emitting Diode (AMOLED) technology, and touch-sensitive surfaces, these devices are sure to corner the market of electronics. A good example is Nokia’s Morph concept, shown here:
Energy Needs: In the cities of the near-future, how we generate electricity for all our household appliances, devices and possibly robots will be a going concern. And in keeping with the goal of sustainability, those needs are likely to be met by solar, wind, piezoelectric, geothermal and tidal power wherever possible. By 2030, buildings are even expected to have arrays built in to them to ensure that they can meet their own energy needs independently.
This could look a lot like the Strawscraper (picture above), where thousands of fronds utilize wind currents to generate electricity all day long; or fields filled with Windstalks – where standing carbon-fiber reinforced poles generate electricity by simply swaying with the wind. Wind farms, or wind tunnels and turbines (as envisioned with the Pertamina Energy Tower in Jakarta) could also be used by buildings to do the same job.
In addition, solar panels mounted on the exterior would convert daylight into energy. Assuming these buildings are situated in low-lying areas, superheated subterranean steam could easily be turned into sources of power through underground pipes connected to turbines. And for buildings located near the sea, turbines placed in the harbor could do the same job by capturing the energy of the tides.
Furthermore, piezoelectric devices could be used to turn everyday activity into electricity. Take the Pavegen as an example, a material composed of recycled tires and piezoelectric motors that turns steps into energy. Equipping every hallway, stairwell and touch surface with tensile material and motors, just about everything residents do in a building could become a source of added power.
On top of that, piezoelectric systems could be embedded in roads and on and off ramps, turning automobile traffic into electrical power. In developed countries, this is likely to take the form of advanced materials that create electrical charges when compressed. But for developing nations, a simple system of air cushions and motors could also be effective, as demonstrated by Macías Hernández’ proposed system for Mexico City.
And this would seem like a good segue into the issue of…
Mass Transit: According to UN surveys, roughly 60% of the world’s population will live in cities by the year 2030. Hopefully, the 5.1 billion of us negotiating tight urban spaces by then will have figured out a better way to get around. With so many people packed into dense urban environments, it is simply not practical for all these individuals to rely on smog-emitting automobiles.
For the most part, this can be tackled by the use of mass transit that is particularly fast and efficient, which are the very hallmarks of maglev trains. And while most current designs are already speedy and produce a smaller carbon footprint than armies of cars, next-generation designs like the Hyperloop, The Northeast Maglev (TNEM), and the Nagoya-Tokyo connector are even more impressive.
Dubbed by Elon Musk as the “fifth form” of transportation, these systems would rely on linear electric motors, solar panels, and air cushions to achieve speeds of up to 1290 kilometers per hour (800 mph). In short, they would be able to transport people from Los Angeles and San Francisco in 30 minutes, from New York to Washington D.C. in 60 minutes, and from Nagoya to Tokyo in just 41.
When it comes to highways, future designs are likely to take into account keeping electric cars charged over long distances. Consider the example that comes to us from Sweden, where Volvo is also working to create an electric highway that has embedded electrical lines that keep cars charged over long distances. And on top of that, highways in the future are likely to be “smart”.
For example, the Netherlands-based Studio Roosegaarde has created a concept which relies on motion sensors to detect oncoming vehicles and light the way for them, then shuts down to reduce energy consumption. Lane markings will use glow-in-the-dark paint to minimize the need for lighting, and another temperature-sensitive paint will be used to show ice warnings when the surface is unusually cold.
In addition, the road markings are expected to have longer-term applications, such as being integrated into a robot vehicle’s intelligent monitoring systems. As automated systems and internal computers become more common, smart highways and smart cars are likely to become integrated through their shared systems, taking people from A to B with only minimal assistance from the driver.
And then there’s the concept being used for the future of the Pearl River Delta. This 39,380 square-km (15,200 square-mile) area in southeastern China encompasses a network of rapidly booming cities like Shenzhen, which is one of the most densely populated areas in the world. It’s also one of the most polluted, thanks to the urban growth bringing with it tons of commuters, cars, and vehicle exhaust.
That’s why NODE Architecture & Urbanism – a Chinese design firm – has come up with a city plan for 2030 that plans put transportation below ground, freeing up a whole city above for more housing and public space. Yes, in addition to mass transit – like subways – even major highways will be relegated to the earth, with noxious fumes piped and tunneled elsewhere, leaving the cityscape far less polluted and safer to breathe.
Personal cars will not be gone, however. Which brings us to…
Personal Transit: In the future, the majority of transport is likely to still consist of automobiles, albeit ones that overwhelmingly rely on electric, hydrogen, biofuel or hybrid engines to get around. And keeping these vehicles fueled is going to be one of the more interesting aspects of future cities. For instance, electric cars will need to stay charged when in use in the city, and charge stations are not always available.
That’s where companies like HEVO Power come into play, with its concept of parking chargers that can offer top-ups for electric cars. Having teamed up with NYU Polytechnic Institute to study the possibility of charging parked vehicles on the street, they have devised a manhole c0ver-like device that can be installed in a parking space, hooked up to the city grid, and recharge batteries while commuters do their shopping.
And when looking at individual vehicles, one cannot underestimate the role by played by robot cars. Already, many proposals are being made by companies like Google and Chevrolet for autonomous vehicles that people will be able to summon using their smartphone. In addition, the vehicles will use GPS navigation to automatically make their way to a destination and store locations in its memory for future use.
And then there’s the role that will be played by robotaxis and podcars, a concept which is already being put to work in Masdar Eco City in the United Arab Emirates, San Diego and (coming soon) the UK town of Milton Keynes. In the case of Masdar, the 2GetThere company has built a series of rails that can accommodate 25,000 people a month and are consistent with the city’s plans to create clean, self-sustaining options for transit.
In the case of San Diego, this consists of a network known as the Personal Rapid Transit System – a series of on-call, point to point transit cars which move about on main lines and intermediate stations to find the quickest route to a destination. In Britian, similar plans are being considered for the town of Milton Keynes – a system of 21 on-call podcars similar to what is currently being employed by Heathrow Airport.
But of course, not all future transportation needs will be solved by MagLev trains or armies of podcars. Some existing technologies – such as the bicycle – work pretty well, and just need to be augmented. Lightlane is a perfect example of this, a set of lasers and LED lights that bikers use to project their own personal bike lane from under the seat as they ride.
And let’s not forget the Copenhagen Wheel, a device invented by MIT SENSEable City Lab back in 2009 to electrify the bicycle. Much like other powered-bicycle devices being unveiled today, this electric wheel has a power assist feature to aid the rider, a regenerative braking system that stores energy, and is controlled by sensors in the peddles and comes with smart features can be controlled via a smartphone app.
On top of all that, some research actually suggests that separating modes of transportation – bike lanes, car lanes, bus lanes, etc. – actually does more harm than good to the people using them. In Europe, the traffic concept known as “shared spaces” actually strips paths of traffic markings and lights, and allow walkers and drivers to negotiate their routes on their own.
Shared spaces create more consideration and consciousness for other people using them, which is why the Boston architecture firm Höweler + Yoon designed the “Tripanel” as part of their larger vision for the Boston-Washington corridor (aka. “Boswash”). The Tripanel features a surface that switches among grass, asphalt, and photovoltaic cells, offering a route for pedestrians, bikers, and electric cars.
Education:
When it comes to schooling ourselves and our children, the near future is likely to see some serious changes, leading to a virtual reinventing of educational models. For some time now, educators have been predicting how the plurality of perspectives and the rise of a globalized mentality would cause the traditional mode of learning (i.e. centralized schools, transmission learning) to break down.
And according to other speculative thinkers, such as Salim Ismail – the director of Singularity University – education will cease being centralized at all and become an “on-demand service”. In this model, people will simply “pull down a module of learning”, and schooldays and classrooms will be replaced by self-directed lessons and “microlearning moments”.
In this new learning environment, teleconferencing, telepresence, and internet resources are likely to be the main driving force. And while the size and shape of future classrooms is difficult to predict, it is likely that classroom sizes will be smaller by 2030, with just a handful of students using portable devices and display glasses to access information while under the guidance of a teacher.
At the same time, classrooms are likely to be springing up everywhere, in the forms of learning annexes in apartment buildings, or home-school environments. Already, this is an option for distance education, where students and teachers are connected through the internet. With the addition of more sophisticated technology, and VR environments, students will be able to enter “virtual classrooms” and connect across vast distances.
According to Eze Vidra, the head of Google Entrepreneurs Europe: “School kids will learn from short bite-sized modules, and gamification practices will be incorporated in schools to incentivize children to progress on their own.” In short, education will become a self-directed, or (in the case of virtual environments) disembodied experienced that are less standardized, more fun, and more suited to individual needs.
Health: Many experts believe that medicine in the future is likely to shift away from addressing illness to prevention. Using thin, flexible, skin-mounted, embedded, and handheld sensors, people will be able to monitor their health on a daily basis, receiving up-to-date information on their blood pressure, cholesterol, kidney and liver values, and the likelihood that they might contract diseases in their lifetime.
All of these devices are likely to be bundled in one way or another, connected via smartphone or other such device to a person’s home computer or account. Or, as Ariel Schwatz of CoExist anticipates, they could come in the form of a “Bathroom GP”, where a series of devices like a Dr.Loo and Dr. Sink measure everything from kidney function to glucose levels during a routine trip.
Basically, these smart toilets and sinks screen for illnesses by examining your spittle, feces, urine and other bodily fluids, and then send that data to a microchip embedded inside you or on a wristband. This info is analyzed and compared to your DNA patterns and medical records to make sure everything is within the normal range. The chip also measures vital signs, and Dr Mirror displays all the results.
However, hospitals will still exist to deal with serious cases, such as injuries or the sudden onset of illnesses. But we can also expect them to be augmented thanks to the incorporation of new biotech, nanotech and bionic advances. With the development of bionic replacement limbs and mind-controlled prosthetics proceeding apace, every hospital in the future is likely to have a cybernetics or bioenhancement ward.
What’s more, the invention of bioprinting, where 3-D printers are able to turn out replacement organic parts on demand, is also likely to seriously alter the field of medical science. If people are suffering from a failing heart, liver, kidney, or have ruined their knees or other joints, they can simply put in at the bioprinting lab and get some printed replacement parts prepared.
And as a final, encouraging point, diseases like cancer and HIV are likely to be entirely curable. With many vaccines that show the ability to not only block, but even kill, the HIV virus in production, this one-time epidemic is likely to be a thing of the past by 2030. And with a cure for cancer expected in coming years, people in 2030 are likely to view it the same way people view polio or tetanus today. In short, dangerous, but curable!
Buying/Selling: When it comes to living in 2030, several trends are expected to contribute to people’s economic behavior. These include slow economic growth, collaborative consumption, 3-D printing, rising costs, resource scarcity, an aging population, and powerful emerging economies. Some of these trends are specific, but all of them will effect the behavior of future generations, mainly because the world of the future will be even more integrated.
As already noted, 3-D printers and scanners in the home are likely to have a profound effect on the consumer economy, mainly by giving rise to an on-demand manufacturing ethos. This, combined with online shopping, is likely to spell doom for the department store, a process that is already well underway in most developed nations (thanks to one-stop shopping).
However, the emergence of the digital economy is also creating far more in the way of opportunities for micro-entrepreneurship and what is often referred to as the “sharing economy”. This represents a convergence between online reviews, online advertising of goods and services, and direct peer-to-peer buying and selling that circumvents major distributors.
This trend, which is not only reaching back in time to reestablish a bartering economy, but is also creating a “trust metric”, whereby companies, brand names, and even individuals are being measured by to their reputation, which in turn is based on their digital presence and what it says about them. Between a “sharing economy” and a “trust economy”, the economy of the future appears highly decentralized.
Further to this is the development of cryptocurrencies, a digital medium of exchange that relies solely on consumer demand to establish its value – not gold standards, speculators or centralized banks. The first such currency was Bitcoin, which emerged in 2009, but which has since been joined by numerous others like Litecoin, Namecoin, Peercoin, Ripple, Worldcoin, Dogecoin, and Primecoin.
In this especially, the world of 2030 is appearing to be a very fluid place, where wealth depends on spending habits and user faith alone, rather than the power of governments, financial organizations, or centralized bureaucracies. And with this movement into “democratic anarchy” underway, one can expect the social dynamics of nations and the world to change dramatically.
Space Travel!: This last section is of such significance that it simply must end with an exclamation mark. And this is simply because by 2030, many missions and projects that will pave the way towards a renewed space age will be happening… or not. It all comes down to whether or not the funding is made available, public interest remains high, and the design and engineering concepts involved hold true.
However, other things are likely to become the norm, such as space tourism. Thanks to visionaries like World View and Richard Branson (the pioneer of space tourism with Virgin Galactic), trips to the lower atmosphere are likely to become a semi-regular occurrence, paving the way not only for off-world space tourism, but aerospace transit across the globe as well.
Private space exploration will also be in full-swing, thanks to companies like Google’s Space X and people like Elon Musk. This year, Space X is preparing for the first launch of it’s Falcon Heavy rocket, a move which will bring affordable space flight that much closer. And by 2030, affordability will be the hallmarks of private ventures into space, which will likely include asteroid mining and maybe the construction of space habitats.
2030 is also the year that NASA plans to send people to Mars, using the Orion Multi-Purpose Crew Vehicle and a redesigned Saturn V rocket. Once there, the crew will conduct surface studies and build upon the vast legacy of the Spirit, Opportunity and Curiosity Rovers to determine what Mars once looked like. This will surely be a media event, the likes of which has not been seen since the Moon Landing.
Speaking of media events, by 2030, NASA may not even be the first space agency or organization to set foot on Mars. Not if Mars One, a nonprofit organization based in the Netherlands, get’s its way and manages to land a group of colonists there by 2023. And they are hardly alone, as Elon Musk has already expressed an interest in establishing a colony of 80,000 people on the Red Planet sometime in the future.
And Inspiration Mars, another non-profit organization hosted by space adventurist Dennis Tito, will have already sent an astronaut couple on a round-trip to Mars and back (again, if all goes as planned). The mission, which is currently slated for 2018 when the planets are in alignment, will therefore be a distant memory, but will serve as an example to all the private space ventures that will have followed.
In addition to Mars, one-way trips are likely to be taking place to other celestial bodies as well. For instance, Objective Europa – a non-profit made up of scientists, conceptual artists, and social-media experts – plans to send a group of volunteers to the Jovian moon of Europa as well. And while 2030 seems a bit soon for a mission, it is likely that (if it hasn’t been scrapped) the program will be in the advanced stages by then.
NASA and other space agencies are also likely to be eying Europa at this time and perhaps even sending ships there to investigate the possibility of life beneath it’s icy surface. Relying on recent revelations about the planet’s ice sheet being thinnest at the equator, a lander or space penetrator is sure to find its way through the ice and determine once and for all if the warm waters below are home to native life forms.
By 2030, NASA’s MAVEN and India’s MOM satellites will also have studied the Martian atmosphere, no doubt providing a much fuller picture of its disappearance. At the same time, NASA will have already towed an asteroid to within the Moon’s orbit to study it, and begun constructing an outpost at the L2 Lagrange Point on the far side of the Moon, should all go as planned.
And last, but certainly not least, by 2030, astronauts from NASA, the ESA, and possibly China are likely to be well on their way towards the creation of a permanent outpost on the Moon. Using a combination of 3-D printing, robots, and sintering technology, future waves of astronauts and settlers will have permanent domes made directly out of regolith with which to conduct research on the Lunar surface.
All of these adventures will help pave the way to a future where space tourism to other planets, habitation on the Moon and Mars, and ventures to the asteroid belt (which will solve humanity’s resource problem indefinitely), will all be the order of the day.
Summary: To break it all down succinctly, the world of 2030 is likely to be rather different than the one we are living in right now. At the same time though, virtually all the developments that characterize it – growing populations, bigger cities, Climate Change, alternative fuels and energy, 3-D printing, cryptocurrencies, and digital devices and communications – are already apparent now.
Still, as these trends and technologies continue to expand and are distributed to more areas of the world – not to mention more people, as they come down in price – humanity is likely to start taking them for granted. The opportunities they open, and the dependency they create, will have a very deterministic effect on how people live and how the next generation will be shaped.
All in all, 2030 will be a very interesting time because it will be here that so many developments – the greatest of which will be Climate Change and the accelerating pace of technological change – will be on the verge of reaching the tipping point. By 2050, both of these factors are likely to come to a head, taking humanity in entirely different directions and vying for control of our future.
Basically, as the natural environment reels from the effects of rising temperatures and an estimated CO2 concentration of 600 ppm in the upper atmosphere, the world will come to be characterized by famine, scarcity, shortages, and high mortality. At the same time, the accelerating pace of technology promises to lead to a new age where abundance, post-scarcity and post-mortality are the norm.
So in the end, 2030 will be a sort of curtain raiser for the halfway point of the 21st century, during which time, humanity’s fate will have become largely evident. I’m sure I’m not alone in hoping things turn out okay, because our children are surely expecting to have children of their own, and I know they would like to leave behind a world the latter could also live in!
Today marks the 28th anniversary of the Shuttle Challenger Disaster, an incident which has lived on in the memories of people around the world and to many, signaled the end of an era. The shuttle’s explosion, which took place at 11:39:13 am EST on January 28th, 1986, occurred just 73 seconds into flight after it took off from Cape Canaveral on the Florida coast.
According to investigators, the accident occurred when the O-ring seal in the shuttle’s solid rocket booster failed during liftoff, which allowed pressurized hot gas from within the solid rocket motor to reach the outside. This malfunction led to the separation of the right-hand solid rocket booster’s aft attachment and the structural failure of the external tank.
The fallen crew members included NASA astronauts Greg Jarvis, Ronald McNair, Ellison Onizuka, Judith Resnik, Michael J. Smith and Dick Scobee, as well as school teacher Christa McAuliffe. It was because of McAuliffe’s presence on the shuttle – as the first member of the Teacher in Space Project – that roughly 17 percent of Americans were tuned to their TVs during the time of the accident and witnessed the tragedy.
The disaster resulted in a 32-month hiatus in the shuttle program and the formation of the Rogers Commission, a presidential commission charged with investigating the accident. It revealed, amongst other things, that NASA’s organizational culture was in part responsible for the disaster. In short, NASA managers had known that the O-Rings in the Solid Rocket Booster (SRB) design contained a fatal flaw, one which was overlooked.
The investigation also revealed that engineers at Morton Thiokol, the manufacturer of the rocket boosters, had warned them prior to the launch of the flaw. One such engineer was Roger Boisjoly, who realized that a shuttle launch in the cold weather that Florida was experiencing would pose a grave danger. As he had indicated, the rockets weren’t designed to launch safely in weather below 40 degrees Fahrenheit.
NASA officials at the time rejected Boisjoly’s warning, saying that he was acting on a gut feeling rather than science. Boisjoly told The Times in an interview in 2003 that NASA tried to blacklist him from the industry, and went so far as to argue that some NASA officials should be indicted for manslaughter charges, and the agency should be abolished.
There are many memorials to the fallen crew, but one of the most cited in education is the 40 Challenger Learning Centers that are located in the United States, Canada, United Kingdom and South Korea. The network was founded by June Scobee Rogers (the widow of commander Scobee) and includes participation from other Challenger family members.
According to their website, their goal is to:
[G]ive students the chance to become astronauts and engineers and solve real-world problems as they share the thrill of discovery on missions through the Solar System.
As a result of the disaster, the Air Force decided to cancel its plans to use the Shuttle for classified military satellite launches from Vandenberg Air Force Base in California, deciding to use the Titan IV instead. Media coverage of the accident was also extensive, with one study indicating that 85 percent of Americans had heard the news within an hour of the accident.
Challenger’s anniversary comes in a week that includes other tragic anniversaries, including the Apollo 1 pad fire that occurred on Jan. 27th, 1967 and claimed the lives of three astronauts’ lives; the Columbia shuttle breakup that happened on Feb. 1st, 2003 and killed seven. Many other astronauts have died in training accidents, and their names are listed at the Astronaut Memorial Foundation.
The disaster has also been used as a case study in many discussions of engineering safety and workplace ethics. And it serves as a constant reminder of the bravery of those who choose to go into space for the sake of advancing science and our understanding of the cosmos. It’s also a reminder that the only safeguard against tragic accidents is eternal vigilance!
Let us all hope and pray no such incidents happen as we embark on a renewed age of space exploration and discovery!
If 2013 will go down in history as the year the Higgs Boson was discovered, then 2014 may very well be known as the year dark matter was first detected. Much like the Higgs Boson, our understanding of the universe rests upon the definitive existence of this mysterious entity, which alongside “dark energy” is believed to make up the vast majority of the cosmos.
Before 2014 rolled around, the Large Underground Xenon experiment (LUX) – located near the town of Lead in South Dakota – was seen as the best candidate for finding it. However, since that time, attention has also been directed towards the DarkSide-50 Experiment located deep underground in the Gran Sasso mountain, the highest peak in the Appennines chain in central Italy.
This project is an international collaboration between Italian, French, Polish, Ukrainian, Russian, and Chinese institutions, as well as 17 American universities, which aims to pin down dark matter particles. The project team spent last summer assembling their detector, a grocery bag-sized device that contains liquid argon, cooled to a temperature of -186° C (-302.8° F), where it is in a liquid state.
According to the researchers, the active, Teflon-coated part of the detector holds 50 kg (110 lb) of argon, which provides the 50 in the experiment’s name. Rows of photodetectors line the top and bottom of the device, while copper coils collect the stripped electrons to help determine the location of collisions between dark matter and visible matter.
The research team, as well as many other scientists, believe that a particle known as a WIMP (weakly interacting massive particle) is the prime candidate for dark matter. WIMP particles have little interaction with their surroundings, so the researchers are hoping to catch one of these particles in the act of drifting aloof. They also believe that these particles can be detected when one of them collides with the nucleus of an atom, such as argon.
By cramming the chamber of their detector with argon atoms, the team increases their chance of seeing a collision. The recoil from these collisions can be seen in a short-lived trail of light, which can then be detected using the chamber’s photodetectors. To ensure that background events are not interfering, the facility is located deep underground to minimize background radiation.
To aid in filtering out background events even further, the detector sits within a steel sphere that is suspended on stilts and filled with 26,500 liters (7000 gallons) of a fluid called scintillator. This sphere in turn sits inside a three-story-high cylindrical tank filled with 946,350 liters (250,000) of ultrapure water. These different chambers help the researchers differentiate WIMP particles from neutrons and cosmic-ray muons.
Since autumn of 2013, the DarkSide-50 project has been active and busy collecting data. And it is one of about three dozen detectors in the world that is currently on the hunt for dark matter, which leads many physicists to believe that elusive dark matter particles will be discovered in the next decade. When that happens, scientists will finally be able to account for 31.7% of the universe’s mass, as opposed to the paltry 4.9% that is visible to us now.
Now if we could only account for all the “dark energy” out there – which is believed to make up the other 68.3% of the universe’s mass – then we’d really be in business! And while we’re waiting, feel free to check out this documentary video about the DarkSide-50 Experiment and the hunt for dark matter, courtesy of Princeton University:
Last Spring, NASA made headlines when it announced that its was granting a developer $125,000 to build a prototype 3-D food printer that would be able to create pizzas and other tasty food items. This is part of NASA’s larger effort to bring 3-D printing into space so that astronauts could meet their nutritional and supply needs on site.
And according to this most recent video, courtesy of Anjan Contractor, it seems that the project had begun to bear fruit. Contractor is the lead engineer behind the printer design, and was employed by NASA’s Systems & Materials Research Corporation to complete a printer that could provide astronauts a nutritious, comforting alternative to the canned and freeze-dried prepackaged foods they’re currently stuck with.
As you can see from the video, the machine does a pretty good job of creating a rectangular, margherita pizza – albeit with some minor spillage. And, according to Contractor, the device takes about 70 seconds to cook the pizza after the printer nozzles were finished laying down the liquid crust-precursor, followed by the tomato sauce and liquid cheese.
If NASA decides it wants to move ahead with the printer, it will still be many, many years before astronauts are eating 3-D printed pizza and other such delectables in space. But this proof of concept is a major step in that direction, and NASA is likely to see its project through to completion before attempting any long-range missions (such as to Mars).
After all, astronauts being in space for extended periods of time is the very reason alternatives are being contemplated in the first place. And in the meantime, check out this video of Contractor’s printer as it generates a pizza:
Remember Mars One, the Netherlands-based nonprofit that began seeking recruits for a one-way trip to the Red Planet during the summer of 2012? Well, it turns out the company is looking to take the next step towards its goal of establishing a human settlement on Mars by 2023. Basically, they are looking to raise the funds to get the ball rolling on the eventual manned mission.
Towards this end, they have started a crowdfunding campaign through Indiegogo – and in partnership with Lockheed Martin – to raise the money for some concept studies, which will test the lander and a satellite that will conduct a demonstration mission in just four years time. The lander is based on Lockheed’s design for the NASA lander successfully used on Mars in 2007 (pictured below).
Their campaign is seeking to raise $400,000, which will cover the costs of the concept studies, and is a mere drop in the bucket compared to the $6 billion the team estimates will be necessary to get humans to Mars. However, most of that money is expected to come from media broadcasting rights as citizen astronauts are selected and, if all goes as planned, start living on the Martian surface.
As has been stated many times over, Mars One is an evolving idea that seeks to make something historic happen. A future, larger crowdfunding campaign will allow universities to compete to send a full experiment to Mars on the 2018 mission, which will be unmanned. Mars One hopes to send four human colonists to the planet by 2025, selected from a pool of more than 200,000 people who have already applied.
And as Hans Lansdorp, CEO of Mars One recently said, this crowdfunding campaign is important to the team to get more people involved. Not only does the project require public interest and participation in order for it to become a reality, Lansdorp and his colleagues also want it to be as international and inclusive as possible:
We really see this as a break with the history of space exploration, and especially Mars exploration, because in this mission anyone can participate in some way… For the U.S., Mars exploration is pretty common. But all of Asia has never sent an experiment to Mars. Now, suddenly we allow anyone, everywhere in the world, to send something to Mars. That’s a complete break with Mars exploration in the past.
Naturally, there are plenty of issues that need to be worked out before anything real can happen, and plenty of naysayers who emphasize the stumbling blocks in sending a manned mission to Mars. These include, but are not restricted to, radiation, microgravity, technological limitations, and the sheer amount of time involved.
Despite all that, Lansdorp and the Mars One team remain committed and dedicated to their goal, and have been taking on all challengers with their usual combination of optimism and entrepreneurial spirit. And they firmly believe that given time, all of these hurdles will be negotiable. What’s more, they’ve convinced more than a few critics of the validity of the mission:
If we have some time to talk to people and explain the details of our plan, and as long as they’re commenting on their own field of expertise, I’ve never met someone who could not be convinced that this is possible. It will be very difficult of course–there are thousands of hurdles on the road between now and landing on Mars–but there are no hurdles that we can identify that we cannot take.
As of the penning of this article, the Mars One campaign has been open since December 10th and has raised $209,677 of its $400,000 goal, with 18 more days to go. And there are certainly no shortage of volunteers, as the company is currently processing applications from 150,000 people. So even if it can’t happen by the proposed date, it is clear that they have grabbed the world’s attention.
And in the meantime, enjoy these videos of the proposed Mars One lander design (which will take place in the 2018 demo mission) and the company’s latest promotional video:
Billions of years ago when the Red Planet was young, it appears to have had a thick atmosphere that was warm enough to support oceans of liquid water, and perhaps even life. Thanks to past and ongoing research conducted by the Spirit, Opportunity and Curiosity rovers, NASA scientists are certain that Mars once boasted conditions that would have supported life.
To dramatize these discoveries, NASA’s Goddard Space Flight Center has created a video representation of what the environment might have looked like billions of years ago. The artist’s concept opens with Mars appearing as a warm, wet place, and then transitioning to the climate that we know today. As the atmosphere gradually disappears, it changes from the Earthlike blue to the dusty pink and tan hues of Mars today.
As the description reads on NASA Goddard’s Youtube page:
The animation shows how the surface of Mars might have appeared during this ancient clement period, beginning with a flyover of a Martian lake. The artist’s concept is based on evidence that Mars was once very different. Rapidly moving clouds suggest the passage of time, and the shift from a warm and wet to a cold and dry climate is shown as the animation progresses.
By the end, Mars has transformed to the acrid environment of 2013 – all “dusty pink and tan hues”. One day, NASA believes it may be possible to bring the environment back from this fate. Though its a mere theory at this point, terraforming could transform Mars back into a warm, wet, and life-sustaining planet once more. Enjoy the clip!
Space is becoming a very interesting place, thanks to numerous innovations that are looking ahead to the next great leap in exploration. With the Moon and Mars firmly fixed as the intended targets for future manned missions, everything from proposed settlements and construction projects are being plotted, and the requisite tools are being fashioned.
For instance, the Shimizu Corporation (the designers of the Shimizu Mega-City Pyramid), a Japanese construction firm, has proposed a radical idea for bringing solar energy to the world. Taking the concept of space-based solar power a step further, Shimizu has proposed the creation of a “Luna Ring” – an array of solar cells around the Moon’s 11000 km (6800 mile) equator to harvest solar energy and beam it back to Earth.
The plan involves using materials derived from lunar soil itself, and then using them to build an array that will measure some 400 km (250 miles) thick. Since the Moon’s equator receives a steady amount of exposure to the Sun, the photovoltaic ring would be able to generate a continuous amount of electricity, which it would then beam down to Earth from the near side of the Moon.
It’s an ambitious idea that calls for assembling machinery transported from Earth and using tele-operated robots to do the actual construction on the Moon’s surface, once it all arrives. The project would involve multiple phases, to be spread out over a period of about thirty years, and which relies on multiple strategies to make it happen.
For example, the firm claims that water – a necessary prerequisite for construction – could be produced by reducing lunar soil with hydrogen imported from Earth. The company also proposes extracting local regolith to fashion “lunar concrete”, and utilizing solar-heat treatment processes to fashion it into bricks, ceramics, and glass fibers.
The remotely-controlled robots would also be responsible for other construction tasks, such as excavating the surrounding landscape, leveling the ground, laying out solar panel-studded concrete, and laying embedded cables that would run from the ring to a series of transmission stations located on the Earth-facing side of the Moon.
Power could be beamed to the Earth through microwave power transmission antennas, about 20 m (65 ft) in diameter, and a series of high density lasers, both of which would be guided by radio beacons. Microwave power receiving antennas on Earth, located offshore or in areas with little cloud cover, could convert the received microwave power into DC electricity and send it to where it was needed.
The company claims that it’s system could beam up to 13,000 terawatts of power around-the-clock, which is roughly two-thirds of what is used by the world on average per year. With such an array looming in space, and a few satellites circling the planet to pick up the slack, Earth’s energy needs could be met for the foreseable future, and all without a single drop of oil or brick of coal.
The proposed timeline has actual construction beginning as soon as 2035.
And naturally, when manned missions are again mounted into space, the crews will need the proper equipment to live, thrive and survive. And since much of the space suit technology is several decades old, space agencies and private companies are partnering to find new and innovative gear with which to equip the men and women who will brave the dangers of space and planetary exploration.
Consider the Biosuit, which is a prime example of a next-generation technology designed to tackle the challenges of manned missions to Mars. Created by Dava Newman, an MIT aerospace engineering professor, this Spiderman-like suit is a sleeker, lighter alternative to the standard EVA suits that weigh approximately 135 kilograms (300 pounds).
For over a decade now, Newman has been working on a suit that is specifically designed for Mars exploration. At this year’s TEDWomen event in San Francisco, she showcased her concept and demonstrated how its ergonomic design will allow astronauts to explore the difficult terrain of the Red Planet without tripping over the bulk they carry with the current EVA suits.
The reason the suit is sleek is because it’s pressurized close to the skin, which is possible thanks to tension lines in the suit. These are coincidentally what give it it’s Spiderman-like appearance, contributing to its aesthetic appeal as well. These lines are specifically designed to flex as the astronauts ends their arms or knees, thus replacing hard panels with soft, tensile fabric.
Active materials, such as nickel-titanium shape-memory alloys, allow the nylon and spandex suit to be shrink-wrapped around the skin even tighter. This is especially important, in that it gets closer Newman to her goal of designing a suit that can contain 30% of the atmosphere’s pressure – the level necessary to keep someone alive in space.
Another benefit of the BioSuit is its resiliency. If it gets punctured, an astronaut can fix it with a new type of space-grade Ace Bandage. And perhaps most importantly, traditional suits can only be fitted to people 5′ 5″ and taller, essentially eliminating short women and men from the astronaut program. The BioSuit, on the other hand, can be built for smaller people, making things more inclusive in the future.
Newman is designing the suit for space, but she also has some Earth-bound uses in mind . Thanks to evidence that showcases the benefits of compression to the muscles and cardiovascular system, the technology behind the Biosuit could be used to increase athletic performance or even help boost mobility for people with cerebral palsy. As Newman herself put it:
We’ll probably send a dozen or so people to Mars in my lifetime. I hope I see it. But imagine if we could help kids with CP just move around a little bit better.
With proper funding, Newman believes she could complete the suit design in two to three years. It would be a boon to NASA, as it appears to be significantly cheaper to make than traditional spacesuits. Funding isn’t in place yet, but Newman still hopeful that the BioSuit will be ready for the first human mission to Mars, which are slated for sometime in 2030.
In the meantime, enjoy this video of the TEDWomen talk featuring Newman and her Biosuit demonstration:
Ever since the Kepler space probe began finding hard evidence of the existence of exoplanets – i.e. planets orbiting suns outside of our Solar System – scientists have been working hard to determine what conditions on these worlds must be like. For instance, it is known that planets that orbit closely to their red dwarf parent suns are tidally locked – meaning they do not rotate on their axis.
This, in turn, has led to the proposal that any watery worlds in the vicinity could form what’s called an “Eyeball Earth.” Being directly under the local star, with one side perpetually facing towards it, the light would be intense enough to melt a circular patch of water, while the rest of the planet would remain locked in a deep freeze. In short, not an ideal situation for supporting life.
However, a new three-dimensional model has been created, thanks to the efforts of two researchers at Peking University. In their research paper, they suggest that ice and oceans on these planets would be dynamic, which is both good and bad. Basically, it means an Eyeball Earth has a narrower habitable zone, but that more of the surface has the potential to support life. It also means that the “eyeball” looks more like a lobster!
This paper represents the next step in scientific analysis of exoplanets. Initially, estimates of habitability – i.e. temperatures that could allow liquid water on the planet surface – were based on a single analysis of the planet’s atmosphere to see how much light reaches the surface. But, in the real world, atmospheres form clouds, distribute heat through winds and convection, and exhibit other sorts of complex behavior.
These are the sorts of things that are handled in the full, three-dimensional climate models built to study the Earth. Hence, the Peking research team adapted these same models to handle exoplanets that differed significantly from Earth. But these models didn’t capture a critical part of the distribution of heat on the Earth: the ocean circulation. Instead, it treated the entire ocean as a two-dimensional slab.
The new study corrects for that by using a coupled ocean-atmosphere climate model, the Community Climate System Model version 3. For their study, they used Gliese 581 g, a potentially Earth-like planet orbiting in the habitable zone of an red dwarf star 20 light years away. This planet, coincidentally, is ranked by NASA as being the most Earth-like exoplanet yet seen in the known universe.
Critically for the model, it’s close enough to its host star to receive 866 Watts/square meter at the top of its atmosphere (whereas the Earth receives 1,366). Since it is not yet known what Gliese 581 g’s atmosphere looks like, the authors assumed an Earth-like composition, but varied the amount of CO2 to change the intensity of the greenhouse effect. From all this, the planet was assumed to be covered in a deep ocean.
After giving the model 1,100 years to come to equilibrium, the authors sampled a century of its climate. With carbon dioxide concentrations similar to the Earth’s (330 parts per million in the model), the “eyeball” vanished. That’s because ocean currents formed along the equator and brought in ice from the west that split the eyeball into two lobes that flanked the equator – which resemble the claws of the lobster.
The currents then transferred heat to the eastern portion of the planet, which melted the ice to form the lobster’s tail. In addition to the ocean current that altered ice distribution, an underwater circulation (similar to the one on Earth) formed, which sent warmer water toward the poles. In the atmosphere, a jet stream also formed over the equator, which also distributed some heat to the unlit side of the planet.
Ultimately, the new model suggests the habitable zone of watery planets near red dwarfs is a bit more narrow than previous studies had suggested. The good news is that, in this model, the ice never got more than 3m thick on the dayside of the planet. That’s thin enough to allow light to reach the water underneath, meaning photosynthesis is a possibility over the entire dayside of the planet.
Although this model is a major improvement, it still lacks a key feature that’s likely to exist on planets – namely continents, or at least features on the seafloor that differ greatly in height. These will radically alter the currents on the planet, and thus radically alter the distribution of heat within the ocean. Unfortunately, this information is even harder to come by at present than atmospheric conditions.
So for the time being, all we really know about Gliese 581 g and other similar exoplanets is that their surfaces are icy, but habitable – not unlike the Jovian moon Europa. However, that is not to say that we won’t have more information in the near future. With Kepler still in operation and the Gaia space observatory now in space, we might be able to construct more detailed models of nearby exoplanets in the near future.
Also a coincidence, Gliese 581 g just happens to be the setting of my writers group’s upcoming anthology, known as Yuva. And with this latest bit of info under our belts (basically, that the entire planet is a big, watery ball), I imagine we’ll have to adjust our stories somewhat!