Reciprocity – Making Progress

future-city-1Hey all. Just wanted to let people know that I’m still around. And as luck would have it, I’ve found myself with some free time; free time that I’ve put towards creative writing again! In the past two weeks in fact, I have come up with a lot of new ideas for both Oscar Mike and (more importantly) Reciprocity. On this latter project, I’ve spent the past few days working through the half-written spots, and now I have a full five chapters done.

More importantly, I have revised the overall plot yet again. The last time I did this (not that long ago), I chose to change the nature of the antagonist to that of a Chinese ex-pat who was a former member of Unit 61398 – the People’s Liberation Army’s cyber warfare division. His name was Shen, and his plot involved a string of kidnapping, double-dealing, and cyber-terrorism that threatened to change the global geopolitical balance.

I liked this idea because I felt that after a good deal of research, the focus of the story should be on post-communist China, where a great deal of social confusion and economic turmoil was leading to the emergence of a semi-fascist state. In a pattern that is reminiscent to modern-day Russia, Shen sought to take advantage of these changes in order to unleash a massive cyber attack.

The downtown district of Shanghai. One of many locations in the story.
The downtown business district of Shanghai. One of many locations in the story.

This would have the effect of completely preoccupying the west, disabling the US Pacific Fleet, and allowing China’s new government to occupy Taiwan and the South China Sea, thus asserting their territorial sovereignty over the region. While this was interesting (at least to me), it still fell short. What I really wanted was an antagonist in the story that would make the focus be all about the two greatest issues we will be facing in the not-too-distant future.

These issues are none other than climate change, which will result in more in the way of droughts, wildfires, flooding, coastal storms, tornadoes, and diminishing resources; and technological progress, which will result in the pace of change and getting faster and faster to the point of total unpredictability.

For awhile, I’ve been writing about these subjects, and they were supposed to be the centerpiece of the story. So here’s the new plot, in a nutshell: The year, same as always, is 2030. A technological magnate’s child disappears while slumming in the Pacific Northwest in what appears to be an act of kidnapping. However, his disappearance is in fact orchestrated as part of a complex cyber intrusion designed to steal company data.

InternettrafficThe man leading this theft – who is known only as Zeke – intends to leverage this data in mainland China, where a former member of Unit 61398, now himself a technological magnate, is in possession of a quantum-based cyber virus of last resort, a weapon that was created for a war that never happened. This virus is known as “Baoying”, which in Chinese, loosely translates to Reciprocity.

Zeke knows about this weapon because he spent years developing contacts around the world, bringing together gun runners, terrorists, socialist and anarchist militias, and Chinese ex-pats that reaches from Central Asia and the Middle East all the way to South America and the South Pacific. Though separated by ideological differences, these organizations are united in wanting to see an end to the status quo.

Zeke, however, has his own agenda. A one-time member of the technological magnates he is now using as pawns, he saw so much of the world and witnessed atrocities firsthand. He also witnessed how the privilege of developed countries is paid for in the blood of others. After a scandal in which he publicly aired all of his companies many shady dealings, his partners crucified him and cast him to the fringes of society.

^In an age where the richer nations are facing the prospect of limitless energy, quantum computing, abundant resources and post-mortality while other states are failing due to displacement and mass starvation, Zeke is hoping to level the playing field once and for all. He is a genius and a man moved by a personal sense of justice. But most of all, he is a man dealing with terrible demons and some deep trauma that he can’t begin to suppress.

This kind of plot, I think, works so much better. The antagonist seems much more socially relevant, the story more focused on the big issues I like to explore, and it all seems a little less hawkish than a story where the Chinese are essentially the bad guys. But most of all, I envisioned a climactic scene where the antagonist – while explaining his motivations – says something like this:

I want a future I can control. I want a future where I have a choice. I am sick of unpredictability, or chaos and confusion. I’m sick of people being left behind, and our world being torn apart. Tomorrow, everyone will find themselves on common footing. Tomorrow, we will begin thinking towards our common future.

Try getting something like that out of a former communist who just wants to see his country win a war! Well, that’s the idea as I see it right now. What do you think? Sound good?

The Fate of Humanity

the-futureWelcome to the world of tomorroooooow! Or more precisely, to many possible scenarios that humanity could face as it steps into the future. Perhaps it’s been all this talk of late about the future of humanity, how space exploration and colonization may be the only way to ensure our survival. Or it could be I’m just recalling what a friend of mine – Chris A. Jackson – wrote with his “Flash in the Pan” piece – a short that consequently inspired me to write the novel Source.

Either way, I’ve been thinking about the likely future scenarios and thought I should include it alongside the Timeline of the Future. After all, once cannot predict the course of the future as much as predict possible outcomes and paths, and trust that the one they believe in the most will come true. So, borrowing from the same format Chris used, here are a few potential fates, listed from worst to best – or least to most advanced.

1. Humanrien:
extinctionDue to the runaway effects of Climate Change during the 21st/22nd centuries, the Earth is now a desolate shadow of its once-great self. Humanity is non-existent, as are many other species of mammals, avians, reptiles, and insects. And it is predicted that the process will continue into the foreseeable future, until such time as the atmosphere becomes a poisoned, sulfuric vapor and the ground nothing more than windswept ashes and molten metal.

One thing is clear though: the Earth will never recover, and humanity’s failure to seed other planets with life and maintain a sustainable existence on Earth has led to its extinction. The universe shrugs and carries on…

2. Post-Apocalyptic:
post-apocalypticWhether it is due to nuclear war, a bio-engineered plague, or some kind of “nanocaust”, civilization as we know it has come to an end. All major cities lie in ruin and are populated only marauders and street gangs, the more peaceful-minded people having fled to the countryside long ago. In scattered locations along major rivers, coastlines, or within small pockets of land, tiny communities have formed and eke out an existence from the surrounding countryside.

At this point, it is unclear if humanity will recover or remain at the level of a pre-industrial civilization forever. One thing seems clear, that humanity will not go extinct just yet. With so many pockets spread across the entire planet, no single fate could claim all of them anytime soon. At least, one can hope that it won’t.

3. Dog Days:
arcology_lillypadThe world continues to endure recession as resource shortages, high food prices, and diminishing space for real estate continue to plague the global economy. Fuel prices remain high, and opposition to new drilling and oil and natural gas extraction are being blamed. Add to that the crushing burdens of displacement and flooding that is costing governments billions of dollars a year, and you have life as we know it.

The smart money appears to be in offshore real-estate, where Lillypad cities and Arcologies are being built along the coastlines of the world. Already, habitats have been built in Boston, New York, New Orleans, Tokyo, Shanghai, Hong Kong and the south of France, and more are expected in the coming years. These are the most promising solution of what to do about the constant flooding and damage being caused by rising tides and increased coastal storms.

In these largely self-contained cities, those who can afford space intend to wait out the worst. It is expected that by the mid-point of the 22nd century, virtually all major ocean-front cities will be abandoned and those that sit on major waterways will be protected by huge levies. Farmland will also be virtually non-existent except within the Polar Belts, which means the people living in the most populous regions of the world will either have to migrate or die.

No one knows how the world’s 9 billion will endure in that time, but for the roughly 100 million living at sea, it’s not a going concern.

4. Technological Plateau:
computer_chip4Computers have reached a threshold of speed and processing power. Despite the discovery of graphene, the use of optical components, and the development of quantum computing/internet principles, it now seems that machines are as smart as they will ever be. That is to say, they are only slightly more intelligent than humans, and still can’t seem to beat the Turing Test with any consistency.

It seems the long awaited-for explosion in learning and intelligence predicted by Von Neumann, Kurzweil and Vinge seems to have fallen flat. That being said, life is getting better. With all the advances turned towards finding solutions to humanity’s problems, alternative energy, medicine, cybernetics and space exploration are still growing apace; just not as fast or awesomely as people in the previous century had hoped.

Missions to Mars have been mounted, but a colony on that world is still a long ways away. A settlement on the Moon has been built, but mainly to monitor the research and solar energy concerns that exist there. And the problem of global food shortages and CO2 emissions is steadily declining. It seems that the words “sane planning, sensible tomorrow” have come to characterize humanity’s existence. Which is good… not great, but good.

Humanity’s greatest expectations may have yielded some disappointment, but everyone agrees that things could have been a hell of a lot worse!

5. The Green Revolution:
MarsGreenhouse2The global population has reached 10 billion. But the good news is, its been that way for several decades. Thanks to smart housing, hydroponics and urban farms, hunger and malnutrition have been eliminated. The needs of the Earth’s people are also being met by a combination of wind, solar, tidal, geothermal and fusion power. And though space is not exactly at a premium, there is little want for housing anymore.

Additive manufacturing, biomanufacturing and nanomanufacturing have all led to an explosion in how public spaces are built and administered. Though it has led to the elimination of human construction and skilled labor, the process is much safer, cleaner, efficient, and has ensured that anything built within the past half-century is harmonious with the surrounding environment.

This explosion is geological engineering is due in part to settlement efforts on Mars and the terraforming of Venus. Building a liveable environment on one and transforming the acidic atmosphere on the other have helped humanity to test key technologies and processes used to end global warming and rehabilitate the seas and soil here on Earth. Over 100,000 people now call themselves “Martian”, and an additional 10,000 Venusians are expected before long.

Colonization is an especially attractive prospect for those who feel that Earth is too crowded, too conservative, and lacking in personal space…

6. Intrepid Explorers:
spacex-icarus-670Humanity has successfully colonized Mars, Venus, and is busy settling the many moons of the outer Solar System. Current population statistics indicate that over 50 billion people now live on a dozen worlds, and many are feeling the itch for adventure. With deep-space exploration now practical, thanks to the development of the Alcubierre Warp Drive, many missions have been mounted to explore and colonizing neighboring star systems.

These include Earth’s immediate neighbor, Alpha Centauri, but also the viable star systems of Tau Ceti, Kapteyn, Gliese 581, Kepler 62, HD 85512, and many more. With so many Earth-like, potentially habitable planets in the near-universe and now within our reach, nothing seems to stand between us and the dream of an interstellar human race. Mission to find extra-terrestrial intelligence are even being plotted.

This is one prospect humanity both anticipates and fears. While it is clear that no sentient life exists within the local group of star systems, our exploration of the cosmos has just begun. And if our ongoing scientific surveys have proven anything, it is that the conditions for life exist within many star systems and on many worlds. No telling when we might find one that has produced life of comparable complexity to our own, but time will tell.

One can only imagine what they will look like. One can only imagine if they are more or less advanced than us. And most importantly, one can only hope that they will be friendly…

7. Post-Humanity:
artificial-intelligence1Cybernetics, biotechnology, and nanotechnology have led to an era of enhancement where virtually every human being has evolved beyond its biological limitations. Advanced medicine, digital sentience and cryonics have prolonged life indefinitely, and when someone is facing death, they can preserve their neural patterns or their brain for all time by simply uploading or placing it into stasis.

Both of these options have made deep-space exploration a reality. Preserved human beings launch themselves towards expoplanets, while the neural uploads of explorers spend decades or even centuries traveling between solar systems aboard tiny spaceships. Space penetrators are fired in all directions to telexplore the most distant worlds, with the information being beamed back to Earth via quantum communications.

It is an age of posts – post-scarcity, post-mortality, and post-humansim. Despite the existence of two billion organics who have minimal enhancement, there appears to be no stopping the trend. And with the breakneck pace at which life moves around them, it is expected that the unenhanced – “organics” as they are often known – will migrate outward to Europa, Ganymede, Titan, Oberon, and the many space habitats that dot the outer Solar System.

Presumably, they will mount their own space exploration in the coming decades to find new homes abroad in interstellar space, where their kind can expect not to be swept aside by the unstoppable tide of progress.

8. Star Children:
nanomachineryEarth is no more. The Sun is now a mottled, of its old self. Surrounding by many layers of computronium, our parent star has gone from being the source of all light and energy in our solar system to the energy source that powers the giant Dyson Swarm at the center of our universe. Within this giant Matrioshka Brain, trillions of human minds live out an existence as quantum-state neural patterns, living indefinitely in simulated realities.

Within the outer Solar System and beyond lie billions more, enhanced trans and post-humans who have opted for an “Earthly” existence amongst the planets and stars. However, life seems somewhat limited out in those parts, very rustic compared to the infinite bandwidth and computational power of inner Solar System. And with this strange dichotomy upon them, the human race suspects that it might have solved the Fermi Paradox.

If other sentient life can be expected to have followed a similar pattern of technological development as the human race, then surely they too have evolved to the point where the majority of their species lives in Dyson Swarms around their parent Sun. Venturing beyond holds little appeal, as it means moving away from the source of bandwidth and becoming isolated. Hopefully, enough of them are adventurous enough to meet humanity partway…

_____

Which will come true? Who’s to say? Whether its apocalyptic destruction or runaway technological evolution, cataclysmic change is expected and could very well threaten our existence. Personally, I’m hoping for something in the scenario 5 and/or 6 range. It would be nice to know that both humanity and the world it originated from will survive the coming centuries!

Universe Today: Are Intelligent Civilizations Doomed?

Gaia_galaxyMy friend over at Universe Today, Fraser Cain, has been busy of late! In his latest podcast, he asks an all-important question that addresses the worrisome questions arising out of the Fermi Paradox. For those unfamiliar with this, the paradox states that given the age of the universe, the sheer number of stars and planets, and the statistical likelihood of some of the supporting life, how has humanity failed to find any indications of intelligent life elsewhere?

It’s a good question, and raised some frightening possibilities. First off, humanity may be alone in the universe, which is frightening enough prospect given its sheer size. Nothing worse than being on a massive playground and knowing you only have but yourself to play with. A second possibility is that extra-terrestrial life does exist, but has taken great pains to avoid being contacting us. An insulting, if understandable, proposition.

alien-worldThird, it could be that humanity alone has achieved the level of technical development necessary to send out and receive radio transmissions or construct satellites. That too is troubling, since it would means that despite the age of the universe, it took this long for an technologically advanced species to emerge, and that there are no species out there that we can learn from or look up to.

The fourth, and arguably most frightening possibility, is the Great Filter theory – that all intelligent life is doomed to destroy itself, and we haven’t heard from any others because they are all dead. This concept has been explored by numerous science fiction authors – such as Stephen Baxter (Manifold: Space), Alastair Reynolds (the Revelation Space universe) and Charles Stross (Accelerand0) – all of whom employ a different variation and answer.

kardashev_scaleAs explored by these and other authors, the biggest suggestions are that either civilizations will eventually create weapons or some kind of programmed matter which will destroy – such as nuclear weapons, planet busters, killer robots, or nanotech that goes haywire (aka. “grey goo”). A second possibility is that all species eventually undergo a technological/existential singularity where they shed their bodies and live out their lives in a simulated existence.

A third is that intelligent civilizations fell into a “success trap”, outgrowing their resources and their capacity to support their numbers, or simply ruined their planetary environment before they could get out into the universe. As usual, Fraser gives a great rundown on all of this, explaining the Fermi Paradox is, the statistical likelihood of life existing elsewhere, and what likely scenarios could explain why humanity has yet to find any proof of other civilizations.

Are Intelligent Civilizations Doomed:


And be sure to check out the podcast that deals strictly with the Fermi Paradox, from roughly a year ago:

The Fermi Paradox Explained:

Flash Forward Is Done!

FlashForward_2After many months on the back burner, I finally took a big step while house-sitting for my family this weekend and completed Flash Forward. For those who don’t know, this book is an anthology of short sci-fi stories I did back in April of 2013, with a few additions from both before and after. All told, it works out to 19 short stories, 140 pages, and just over 51,000 words.

For some time, I had been wanting to do some fiction that explored the world of emerging technologies, artificial intelligence, autonomous machines, space exploration and the coming Technological Singularity. And a project involving a short story a day for 26 days was just the excuse I needed. After collecting the resulting stories together, I grouped them into three parts based on common time period and theme.

transhumanismPart I: Transitions deals with the near future, where climate change, militarized borders, and explosive growth in portables, social media, and synthetic foods will have a major effect on life. Part II: Convergence deals with the ensuing decades, where space exploration, artificial intelligence, digital sentience, and extropianism will become the norm and fundamentally alter what it is to live, work, and be human.

And Part III: Infinitum finishes things off, looking to the distant future where the seed of humanity is planted amongst the distant stars and our species passes the existential singularity. It was fun to write, but what I’ve been looking forward to for quite some time is the chance to hold a physical copy. Somehow, that’s always the best moment of the whole creative process for me. Seeing the book in print, as a real, physical thing you can touch and leaf through.

hyperspace4And now if you’ll excuse me, I have a book to edit, a million and one ideas for critical revision to consider, and a whole heap of what Aldous Huxley referred to as “Chronic Remorse” to deal with. Writing, huh? There’s a reason not everybody does it!

Sid Meier’s Civilization: Beyond Earth

sidmeiers_civbeyondearthSid Meier’s Civilization II is one of my favorite games of all time. I can’t tell you how many hours I spent playing this strategy game, even years after its release. The spinoff, Sid Meier’s Alpha Centauri, is another favorite that I still own. And despite them not being my favorites, Civ III, IV, and even V are all in my player chest. As a lifelong fan, I am usually pretty enthused when a new entry comes along.

So when Beyond Earth was announced, I began paying attention. Similar to what Alpha Centauri did, the game follows an off-world expedition as it tries to establish a human settlement on a distant planet. As a victory condition in all the previous games, this sort of spinoff is a natural extension of the Civilization universe. Much like in the regular games, you establish settlements, research technologies, and compete with other factions for dominance.

sid_meiers_civilization-beyond_earth-pyramidsBut what I especially like about these versions is the speculative nature of it all. As a future faction that is far removed from Earth, you have to deal with alien ecology and biology, research technologies that do not yet exist, unlock some of the fundamental mysteries of the universe, and even experience the technological and/or existential singularity. It’s way cool!

As the commercial description reads:

Sid Meier’s Civilization®: Beyond Earth™ is a new science-fiction-themed entry into the award-winning Civilization series. As part of an expedition sent to find a home beyond Earth, lead your people into a new frontier, explore and colonize an alien planet and create a new civilization in space. A New Beginning for Mankind is coming Fall/Autumn 2014.

According to Steam, the official release date is October 24th 2014. Check out the Announce Trailer below:

Accelerando: A Review

posthumanIt’s been a long while since I did a book review, mainly because I’ve been immersed in my writing. But sooner or later, you have to return to the source, right? As usual, I’ve been reading books that I hope will help me expand my horizons and become a better writer. And with that in mind, I thought I’d finally review a book I finished reading some months ago, one which was I read in the hopes of learning my craft.

It’s called Accelerando, one of Charle’s Stross better known works that earned him the Hugo, Campbell, Clarke, and British Science Fiction Association Awards. The book contains nine short stories, all of which were originally published as novellas and novelettes in Azimov’s Science Fiction. Each one revolves around the Mancx family, looking at three generations that live before, during, and after the technological singularity.

https://i0.wp.com/1a3kls1q8u5etu6z53sktyqdif.wpengine.netdna-cdn.com/wp-content/uploads/2011/06/Charles-Stross.jpgThis is the central focus of the story – and Stross’ particular obsession – which he explores in serious depth. The title, which in Italian means “speeding up” and is used as a tempo marking in musical notation, refers to the accelerating rate of technological progress and its impact on humanity. Beginning in the 21st century with the character of Manfred Mancx, a “venture altruist”; moving to his daughter Amber in the mid 21st century; the story culminates with Sirhan al-Khurasani, Amber’s son in the late 21st century and distant future.

In the course of all that, the story looks at such high-minded concepts as nanotechnology, utility fogs, clinical immortality, Matrioshka Brains, extra-terrestrials, FTL, Dyson Spheres and Dyson Swarms, and the Fermi Paradox. It also takes a long-view of emerging technologies and predicts where they will take us down the road.

And to quote Cory Doctorw’s own review of the book, it essentially “Makes hallucinogens obsolete.”

Plot Synopsis:
http://upload.wikimedia.org/wikipedia/en/0/0b/Accelerando_%28book_cover%29.jpg
Part I, Slow Takeoff, begins with the short story “Lobsters“, which opens in early-21st century Amsterdam. Here, we see Manfred Macx, a “venture altruist”, going about his business, making business ideas happen for others and promoting development. In the course of things, Manfred receives a call on a courier-delivered phone from entities claiming to be a net-based AI working through a KGB website, seeking his help on how to defect.

Eventually, he discovers the callers are actually uploaded brain-scans of the California spiny lobster looking to escape from humanity’s interference. This leads Macx to team up with his friend, entrepreneur Bob Franklin, who is looking for an AI to crew his nascent spacefaring project—the building of a self-replicating factory complex from cometary material.

In the course of securing them passage aboard Franklin’s ship, a new legal precedent is established that will help define the rights of future AIs and uploaded minds. Meanwhile, Macx’s ex-fiancee Pamela pursues him, seeking to get him to declare his assets as part of her job with the IRS and her disdain for her husband’s post-scarcity economic outlook. Eventually, she catches up to him and forces him to impregnate and marry her in an attempt to control him.

The second story, “Troubador“, takes place three years later where Manfred is in the middle of an acrimonious divorce with Pamela who is once again seeking to force him to declare his assets. Their daughter, Amber, is frozen as a newly fertilized embryo and Pamela wants to raise her in a way that would be consistent with her religious beliefs and not Manfred’s extropian views. Meanwhile, he is working on three new schemes and looking for help to make them a reality.

These include a workable state-centralized planning apparatus that can interface with external market systems, a way to upload the entirety of the 20th century’s out-of-copyright film and music to the net. He meets up with Annette again – a woman working for Arianspace, a French commercial aerospace company – and the two begin a relationship. With her help, his schemes come together perfectly and he is able to thwart his wife and her lawyers. However, their daughter Amber is then defrosted and born, and henceforth is being raised by Pamela.

The third and final story in Part I is “Tourist“, which takes place five years later in Edinburgh. During this story, Manfred is mugged and his memories (stored in a series of Turing-compatible cyberware) are stolen. The criminal tries to use Manfred’s memories and glasses to make some money, but is horrified when he learns all of his plans are being made available free of charge. This forces Annabelle to go out and find the man who did it and cut a deal to get his memories back.

Meanwhile, the Lobsters are thriving in colonies situated at the L5 point, and on a comet in the asteroid belt. Along with the Jet Propulsion Laboratory and the ESA, they have picked up encrypted signals from outside the solar system. Bob Franklin, now dead, is personality-reconstructed in the Franklin Collective. Manfred, his memories recovered, moves to further expand the rights of non-human intelligences while Aineko begins to study and decode the alien signals.

http://garethstack.files.wordpress.com/2006/12/url-3.jpegPart II, Point of Inflection, opens a decade later in the early/mid-21st century and centers on Amber Macx, now a teen-ager, in the outer Solar System. The first story, entitled “Halo“, centers around Amber’s plot (with Annette and Manfred’s help) to break free from her domineering mother by enslaving herself via s Yemeni shell corporation and enlisting aboard a Franklin-Collective owned spacecraft that is mining materials from Amalthea, Jupiter’s fourth moon.

To retain control of her daughter, Pamela petitions an imam named Sadeq to travel to Amalthea to issue an Islamic legal judgment against Amber. Amber manages to thwart this by setting up her own empire on a small, privately owned asteroid, thus making herself sovereign over an actual state. In the meantime, the alien signals have been decoded, and a physical journey to an alien “router” beyond the Solar System is planned.

In the second story Router“, the uploaded personalities of Amber and 62 of her peers travel to a brown dwarf star named Hyundai +4904/-56 to find the alien router. Traveling aboard the Field Circus, a tiny spacecraft made of computronium and propelled by a Jupiter-based laser and a lightsail, the virtualized crew are contacted by aliens.

Known as “The Wunch”, these sentients occupy virtual bodies based on Lobster patterns that were “borrowed” from Manfred’s original transmissions. After opening up negotiations for technology, Amber and her friends realize the Wunch are just a group of thieving, third-rate “barbarians” who have taken over in the wake of another species transcending thanks to a technological singularity. After thwarting The Wunch, Amber and a few others make the decision to travel deep into the router’s wormhole network.

In the third story, Nightfall“, the router explorers find themselves trapped by yet more malign aliens in a variety of virtual spaces. In time, they realize the virtual reaities are being hosted by a Matrioshka brain – a megastructure built around a star (similar to a Dyson’s Sphere) composed of computronium. The builders of this brain seem to have disappeared (or been destroyed by their own creations), leaving an anarchy ruled by sentient, viral corporations and scavengers who attempt to use newcomers as currency.

With Aineko’s help, the crew finally escapes by offering passage to a “rogue alien corporation” (a “pyramid scheme crossed with a 419 scam”), represented by a giant virtual slug. This alien personality opens a powered route out, and the crew begins the journey back home after many decades of being away.

https://storiesbywilliams.files.wordpress.com/2014/06/d622e-charles_stross_accelerando_magyar.jpgPart III, Singularity, things take place back in the Solar System from the point of view of Sirhan – the son of the physical Amber and Sadeq who stayed behind. In “Curator“, the crew of the Field Circus comes home to find that the inner planets of the Solar System have been disassembled to build a Matrioshka brain similar to the one they encountered through the router. They arrive at Saturn, which is where normal humans now reside, and come to a floating habitat in Saturn’s upper atmosphere being run by Sirhan.

The crew upload their virtual states into new bodies, and find that they are all now bankrupt and unable to compete with the new Economics 2.0 model practised by the posthuman intelligences of the inner system. Manfred, Pamela, and Annette are present in various forms and realize Sirhan has summoned them all to this place. Meanwhile, Bailiffs—sentient enforcement constructs—arrive to “repossess” Amber and Aineko, but a scheme is hatched whereby the Slug is introduced to Economics 2.0, which keeps both constructs very busy.

In “Elector“, we see Amber, Annette, Manfred and Gianna (Manfred’s old political colleague) in the increasingly-populated Saturnian floating cities and working on a political campaign to finance a scheme to escape the predations of the “Vile Offspring” – the sentient minds that inhabit the inner Solar System’s Matrioshka brain. With Amber in charge of this “Accelerationista” party, they plan to journey once more to the router network. She loses the election to the stay-at-home “conservationista” faction, but once more the Lobsters step in to help by offering passage to uploads on their large ships if the humans agree to act as explorers and mappers.

In the third and final chapter, “Survivor“, things fast-forward to a few centuries after the singularity. The router has once again been reached by the human ship and humanity now lives in space habitats throughout the Galaxy. While some continue in the ongoing exploration of space, others (copies of various people) live in habitats around Hyundai and other stars, raising children and keeping all past versions of themselves and others archived.

Meanwhile, Manfred and Annette reconcile their differences and realize they were being manipulated all along. Aineko, who was becoming increasingly intelligent throughout the decades, was apparently pushing Manfred to fulfill his schemes to help bring the humanity to the alien node and help humanity escape the fate of other civilizations that were consumed by their own technological progress.

Summary:
Needless to say, this book was one big tome of big ideas, and could be mind-bendingly weird and inaccessible at times! I’m thankful I came to it when I did, because no one should attempt to read this until they’ve had sufficient priming by studying all the key concepts involved. For instance, don’t even think about touching this book unless you’re familiar with the notion of the Technological Singularity. Beyond that, be sure to familiarize yourself with things like utility fogs, Dyson Spheres, computronium, nanotechnology, and the basics of space travel.

You know what, let’s just say you shouldn’t be allowed to read this book until you’ve first tackled writers like Ray Kurzweil, William Gibson, Arthur C. Clarke, Alastair Reynolds and Neal Stephenson. Maybe Vernon Vinge too, who I’m currently working on. But assuming you can wrap your mind around the things presented therein, you will feel like you’ve digested something pretty elephantine and which is still pretty cutting edge a decade or more years after it was first published!

But to break it all down, the story is essentially a sort of cautionary tale of the dangers of the ever-increasing pace of change and advancement. At several points in the story, the drive toward extropianism and post-humanity is held up as both an inevitability and a fearful prospect. It’s also presented as a possible explanation for the Fermi Paradox – which states that if sentient life is statistically likely and plentiful in our universe, why has humanity not observed or encountered it?

According to Stross, it is because sentient species – which would all presumably have the capacity for technological advancement – will eventually be consumed by the explosion caused by ever-accelerating progress. This will inevitably lead to a situation where all matter can be converted into computing space, all thought and existence can be uploaded, and species will not want to venture away from their solar system because the bandwidth will be too weak. In a society built on computronium and endless time, instant communication and access will be tantamount to life itself.

All that being said, the inaccessibility can be tricky sometimes and can make the read feel like its a bit of a labor. And the twist at the ending did seem like it was a little contrived and out of left field. It certainly made sense in the context of the story, but to think that a robotic cat that was progressively getting smarter was the reason behind so much of the story’s dynamic – both in terms of the characters and the larger plot – seemed sudden and farfetched.

And in reality, the story was more about the technical aspects and deeper philosophical questions than anything about the characters themselves. As such, anyone who enjoys character-driven stories should probably stay away from it. But for people who enjoy plot-driven tales that are very dense and loaded with cool technical stuff (which describes me pretty well!), this is definitely a must-read.

Now if you will excuse me, I’m off to finish Vernor Vinge’s Rainbow’s End, another dense, sometimes inaccessible read!

Stephen Hawking: AI Could Be a “Real Danger”

http://flavorwire.files.wordpress.com/2014/06/safe_image.jpgIn a hilarious appearance on “Last Week Tonight” – John Oliver’s HBO show – guest Stephen Hawking spoke about some rather interesting concepts. Among these were the concepts of “imaginary time” and, more interestingly, artificial intelligence. And much to the surprise of Oliver, and perhaps more than a few viewers, Hawking’s was not too keen on the idea of the latter. In fact, his predictions were just a tad bit dire.

Of course, this is not the first time Oliver had a scientific authority on his show, as demonstrated by his recent episode which dealt with Climate Change and featured guest speaker Bill Nye “The Science Guy”. When asked about the concept of imaginary time, Hawking explained it as follows:

Imaginary time is like another direction in space. It’s the one bit of my work science fiction writers haven’t used.

singularity.specrepIn sum, imaginary time has something to do with time that runs in a different direction to the time that guides the universe and ravages us on a daily basis. And according to Hawking, the reason why sci-fi writers haven’t built stories around imaginary time is apparently due to the fact that  “They don’t understand it”. As for artificial intelligence, Hawking replied without any sugar-coating:

Artificial intelligence could be a real danger in the not too distant future. [For your average robot could simply] design improvements to itself and outsmart us all.

Oliver, channeling his inner 9-year-old, asked: “But why should I not be excited about fighting a robot?” Hawking offered a very scientific response: “You would lose.” And in that respect, he was absolutely right. One of the greatest concerns with AI, for better or for worse, is the fact that a superior intelligence, left alone to its own devices, would find ways to produce better and better machines without human oversight or intervention.

terminator2_JDAt worst, this could lead to the machines concluding that humanity is no longer necessary. At best, it would lead to an earthly utopia where machines address all our worries. But in all likelihood, it will lead to a future where the pace of technological change will impossible to predict. As history has repeatedly shown, technological change brings with it all kinds of social and political upheaval. If it becomes a runaway effect, humanity will find it impossible to keep up.

Keeping things light, Oliver began to worry that Hawking wasn’t talking to him at all. Instead, this could be a computer spouting wisdoms. To which, Hawking replied: “You’re an idiot.” Oliver also wondered whether, given that there may be many parallel universes, there might be one where he is smarter than Hawking. “Yes,” replied the physicist. “And also a universe where you’re funny.”

Well at least robots won’t have the jump on us when it comes to being irreverent. At least… not right away! Check out the video of the interview below:


Source: cnet.com

The Birth of AI: Computer Beats the Turing Test!

turing-statueAlan Turing, the British mathematician and cryptogropher, is widely known as the “Father of Theoretical Computer Science and Artificial Intelligence”. Amongst his many accomplishments – such as breaking Germany’s Enigma Code – was the development of the Turing Test. The test was introduced by Turing’s 1950 paper “Computing Machinery and Intelligence,” in which he proposed a game wherein a computer and human players would play an imitation game.

In the game, which involves three players, involves Player C  asking the other two a series of written questions and attempts to determine which of the other two players is a human and which one is a computer. If Player C cannot distinguish which one is which, then the computer can be said to fit the criteria of an “artificial intelligence”. And this past weekend, a computer program finally beat the test, in what experts are claiming to be the first time AI has legitimately fooled people into believing it’s human.

eugene_goostmanThe event was known as the Turing Test 2014, and was held in partnership with RoboLaw, an organization that examines the regulation of robotic technologies. The machine that won the test is known as Eugene Goostman, a program that was developed in Russia in 2001 and goes under the character of a 13-year-old Ukrainian boy. In a series of chatroom-style conversations at the University of Reading’s School of Systems Engineering, the Goostman program managed to convince 33 percent of a team of judges that he was human.

This may sound modest, but that score placed his performance just over the 30 percent requirement that Alan Turing wrote he expected to see by the year 2000. Kevin Warwick, one of the organisers of the event at the Royal Society in London this weekend, was on hand for the test and monitored it rigorously. As Deputy chancellor for research at Coventry University, and considered by some to be the world’s first cyborg, Warwick knows a thing or two about human-computer relations

kevin_warwickIn a post-test interview, he explained how the test went down:

We stuck to the Turing test as designed by Alan Turing in his paper; we stuck as rigorously as possible to that… It’s quite a difficult task for the machine because it’s not just trying to show you that it’s human, but it’s trying to show you that it’s more human than the human it’s competing against.

For the sake of conducting the test, thirty judges had conversations with two different partners on a split screen—one human, one machine. After chatting for five minutes, they had to choose which one was the human. Five machines took part, but Eugene was the only one to pass, fooling one third of his interrogators. Warwick put Eugene’s success down to his ability to keep conversation flowing logically, but not with robotic perfection.

Turing-Test-SchemeEugene can initiate conversations, but won’t do so totally out of the blue, and answers factual questions more like a human. For example, some factual question elicited the all-too-human answer “I don’t know”, rather than an encyclopaedic-style answer where he simply stated cold, hard facts and descriptions. Eugene’s successful trickery is also likely helped by the fact he has a realistic persona. From the way he answered questions, it seemed apparent that he was in fact a teenager.

Some of the “hidden humans” competing against the bots were also teenagers as well, to provide a basis of comparison. As Warwick explained:

In the conversations it can be a bit ‘texty’ if you like, a bit short-form. There can be some colloquialisms, some modern-day nuances with references to pop music that you might not get so much of if you’re talking to a philosophy professor or something like that. It’s hip; it’s with-it.

Warwick conceded the teenage character could be easier for a computer to convincingly emulate, especially if you’re using adult interrogators who aren’t so familiar with youth culture. But this is consistent with what scientists and analysts predict about the development of AI, which is that as computers achieve greater and greater sophistication, they will be able to imitate human beings of greater intellectual and emotional development.

artificial-intelligenceNaturally, there are plenty of people who criticize the Turing test for being an inaccurate way of testing machine intelligence, or of gauging this thing known as intelligence in general. The test is also controversial because of the tendency of interrogators to attribute human characteristics to what is often a very simple algorithm. This is unfortunate because chatbots are easy to trip up if the interrogator is even slightly suspicious.

For instance, chatbots have difficulty answering follow up questions and are easily thrown by non-sequiturs. In these cases, a human would either give a straight answer, or respond to by specifically asking what the heck the person posing the questions is talking about, then replying in context to the answer. There are also several versions of the test, each with its own rules and criteria of what constitutes success. And as Professor Warwick freely admitted:

Some will claim that the Test has already been passed. The words Turing Test have been applied to similar competitions around the world. However this event involved more simultaneous comparison tests than ever before, was independently verified and, crucially, the conversations were unrestricted. A true Turing Test does not set the questions or topics prior to the conversations. We are therefore proud to declare that Alan Turing’s Test was passed for the first time on Saturday.

artificial_intelligence1So what are the implications of this computing milestone? Is it a step in the direction of a massive explosion in learning and research, an age where computing intelligences vastly exceed human ones and are able to assist us in making countless ideas real? Or it is a step in the direction of a confused, sinister age, where the line between human beings and machines is non-existent, and no one can tell who or what the individual addressing them is anymore?

Difficult to say, but such is the nature of groundbreaking achievements. And as Warwick suggested, an AI like Eugene could be very helpful to human beings and address real social issues. For example, imagine an AI that is always hard at work on the other side of the cybercrime battle, locating “black-hat” hackers and cyber predators for law enforcement agencies. And what of assisting in research endeavors, helping human researchers to discover cures for disease, or design cheaper, cleaner, energy sources?

As always, what the future holds varies, depending on who you ask. But in the end, it really comes down to who is involved in making it a reality. So a little fear and optimism are perfectly understandable when something like this occurs, not to mention healthy.

Sources: motherboard.vice.com, gizmag.com, reading.ac.uk

Visions of the Future: Life in the 2030’s

future-city-1Gauging what life will be like down the road based on the emerging trends of today is something that scientists and speculative minds have been doing since the beginning of time. But given the rapid pace of change in the last century – and the way that it continues to accelerate – predicting future trends has become something of a virtual necessity today.

And the possibilities that are expected for the next generation are both awe-inspiring and cause for concern. On the one hand, several keen innovations are expected to become the norm in terms of transportation, education, health care and consumer trends. On the other, the growing problems of overpopulation, urbanization and Climate Change are likely to force some serious changes.

index-awards-horizontal-galleryHaving read through quite a bit of material lately that comes from design firms, laboratories, and grant funds that seek to award innovation, I decided to do a post that would take a look at how life is expected to change in the coming decades, based on what we are seeing at work today. So here we go, enjoy the ride, and remember to tip the driver!

Housing:
When it comes to designing the cities of the future – where roughly 5 of the worlds 8.25 billion people are going to live – meeting the basic needs of all these folks is complicated by the need to meet them in a sustainable way. Luckily, people all across the world are coming together to propose solutions to this problem, ranging from the small and crafty to the big and audacious.

wallsmart_paintConsider that buildings of the future could be coated with Smart Paint, a form of pigment that allows people to change the color of their domicile simply by pushing a button. Utilizing nano-particles that rearrange themselves to absorb a different part of the spectrum, the paint is able to reflect whatever wavelength of visible light the user desires, becoming that color and removing the need for new coats of paint.

And consider that apartments and houses in this day could be lighted by units that convert waste light energy from their light bulbs back into functional ambient light. This is the idea behind the Trap Light, a lamp that comes equipped with photoluminescent pigments embedded directly into the glass body. Through this process, 30 minutes of light from an incandescent or LED light bulb provides a few hours of ambient lighting.

trap_lightAnd in this kind of city, the use of space and resources has come to be very efficient, mainly because it has had to. In terms of low-rent housing, designs like the Warsaw-inspired Keret House are very popular, a narrow, 14-sqaure meter home that still manages to fit a bathroom, kitchen and bedroom. Being so narrow, city planners are able to squeeze these into the gaps between older buildings, its walls and floors snapping together like Lego.

When it comes to other, larger domiciles (like houses and apartment blocks), construction is likely to become a much more speedy and efficient process – relying on the tools of Computer-Assisted Design (CAD) and digital fabrication (aka. the D-process). Basically, the entire fabrication process is plotted in advance on computer, and then the pieces are tailor made in the factory and snapped together on site.


And lets not forget anti-gravity 3-D printing as a means of urban assembly, as proposed by architecture students from the Joris Laarman Lab in Amsterdam. Using quick-hardening materials and dispensed by robot-driven printers, entire apartment blocks – from electronic components to entire sections of wall – within a few days time. Speedier, safer and more efficient than traditional construction.

Within these buildings, water is recycled and treated, with grey water used to fertilize crops that are grown in house. Using all available spaces – dedicated green spaces, vertical agriculture, and “victory gardens” on balconies – residents are able to grow their own fruits and vegetables. And household 3-D food printers will dispense tailor-made treats, from protein-rich snacks and carb crackers to chocolate and cakes.

anti-grav3dAnd of course, with advances in smart home technology, you can expect that your appliances, thermostat, and display devices will all be predictive and able to anticipate your needs for the day. What’s more, they will all be networked and connected to you via a smartphone or some other such device, which by 2030, is likely to take the form of a smartwatch, smartring or smartbracelet.

Speaking of which…

Smart Devices and Appliances:
When it comes to living in the coming decades, the devices we use to manage our everyday lives and needs will have evolved somewhat. 3-D printing is likely to be an intrinsic part of this, manufacturing everything from food to consumer products. And when it comes to scanning things for the sake of printing them, generating goods on demand, handheld scanners are likely to become all the rage.

consumer_2030That’s where devices like the Mo.Mo. (pictured above) will come into play. According to Futurist Forum, this molecular scanning device scans objects around your house, tells you what materials they’re made from, and whether they can be re-created with a 3-D printer. Personal, household printers are also likely to be the norm, with subscriptions to open-source software sites leading to on-demand household manufacturing.

And, as already mentioned, everything in the home and workplace is likely to be connected to your person through a smart device or embedded chips. Consistent with the concept of the “Internet of Things”, all devices are likely to be able to communicate with you and let you know where they are in real time. To put that in perspective, imagine SIRI speaking to you in the form of your car keys, telling you they are under the couch.

future-officeTelepresence, teleconferencing and touchscreens made out of every surface are also likely to have a profound effect. When a person wakes in the morning, the mirror on the wall will have displays telling them the date, time, temperature, and any messages and emails they received during the night. When they are in the shower, the wall could comforting images while music plays. This video from Corning Glass illustrates quite well:


And the current range of tablets, phablets and smartphones are likely to be giving way to flexible, transparent, and ultralight/ultrathin handhelds and wearables that use projection and holographic technology. These will allow a person to type, watch video, or just interface with cyberspace using augmented reality instead of physical objects (like a mouse or keyboard).

And devices which can convert, changing from a smartphone to a tablet to a smartwatch (and maybe even glasses) are another predicted convenience. Relying on nanofabrication technology, Active-Matrix Organic Light-Emitting Diode (AMOLED) technology, and touch-sensitive surfaces, these devices are sure to corner the market of electronics. A good example is Nokia’s Morph concept, shown here:


Energy Needs:

In the cities of the near-future, how we generate electricity for all our household appliances, devices and possibly robots will be a going concern. And in keeping with the goal of sustainability, those needs are likely to be met by solar, wind, piezoelectric, geothermal and tidal power wherever possible. By 2030, buildings are even expected to have arrays built in to them to ensure that they can meet their own energy needs independently.

strawscaperThis could look a lot like the Strawscraper (picture above), where thousands of fronds utilize wind currents to generate electricity all day long; or fields filled with Windstalks – where standing carbon-fiber reinforced poles generate electricity by simply swaying with the wind. Wind farms, or wind tunnels and turbines (as envisioned with the Pertamina Energy Tower in Jakarta) could also be used by buildings to do the same job.

In addition, solar panels mounted on the exterior would convert daylight into energy. Assuming these buildings are situated in low-lying areas, superheated subterranean steam could easily be turned into sources of power through underground pipes connected to turbines. And for buildings located near the sea, turbines placed in the harbor could do the same job by capturing the energy of the tides.

asiancairns_pl14mFurthermore, piezoelectric devices could be used to turn everyday activity into electricity.  Take the Pavegen as an example, a material composed of recycled tires and piezoelectric motors that turns steps into energy. Equipping every hallway, stairwell and touch surface with tensile material and motors, just about everything residents do in a building could become a source of added power.

On top of that, piezoelectric systems could be embedded in roads and on and off ramps, turning automobile traffic into electrical power. In developed countries, this is likely to take the form of advanced materials that create electrical charges when compressed. But for developing nations, a simple system of air cushions and motors could also be effective, as demonstrated by Macías Hernández’ proposed system for Mexico City.

And this would seem like a good segue into the issue of…

Mass Transit:
future-city3According to UN surveys, roughly 60% of the world’s population will live in cities by the year 2030. Hopefully, the 5.1 billion of us negotiating tight urban spaces by then will have figured out a better way to get around. With so many people packed into dense urban environments, it is simply not practical for all these individuals to rely on smog-emitting automobiles.

For the most part, this can be tackled by the use of mass transit that is particularly fast and efficient, which are the very hallmarks of maglev trains. And while most current designs are already speedy and produce a smaller carbon footprint than armies of cars, next-generation designs like the Hyperloop, The Northeast Maglev (TNEM), and the Nagoya-Tokyo connector are even more impressive.

scmaglev-rendering-washington-stationDubbed by Elon Musk as the “fifth form” of transportation, these systems would rely on linear electric motors, solar panels, and air cushions to achieve speeds of up to 1290 kilometers per hour (800 mph). In short, they would be able to transport people from Los Angeles and San Francisco in 30 minutes, from New York to Washington D.C. in 60 minutes, and from Nagoya to Tokyo in just 41.

When it comes to highways, future designs are likely to take into account keeping electric cars charged over long distances. Consider the example that comes to us from Sweden, where Volvo is also working to create an electric highway that has embedded electrical lines that keep cars charged over long distances. And on top of that, highways in the future are likely to be “smart”.

electric-highwayFor example, the Netherlands-based Studio Roosegaarde has created a concept which relies on motion sensors to detect oncoming vehicles and light the way for them, then shuts down to reduce energy consumption. Lane markings will use glow-in-the-dark paint to minimize the need for lighting, and another temperature-sensitive paint will be used to show ice warnings when the surface is unusually cold.

In addition, the road markings are expected to have longer-term applications, such as being integrated into a robot vehicle’s intelligent monitoring systems. As automated systems and internal computers become more common, smart highways and smart cars are likely to become integrated through their shared systems, taking people from A to B with only minimal assistance from the driver.

smart-highwaysAnd then there’s the concept being used for the future of the Pearl River Delta. This 39,380 square-km (15,200 square-mile) area in southeastern China encompasses a network of rapidly booming cities like Shenzhen, which is one of the most densely populated areas in the world. It’s also one of the most polluted, thanks to the urban growth bringing with it tons of commuters, cars, and vehicle exhaust.

That’s why NODE Architecture & Urbanism – a Chinese design firm – has come up with a city plan for 2030 that plans put transportation below ground, freeing up a whole city above for more housing and public space. Yes, in addition to mass transit – like subways – even major highways will be relegated to the earth, with noxious fumes piped and tunneled elsewhere, leaving the cityscape far less polluted and safer to breathe.

Personal cars will not be gone, however. Which brings us to…

Personal Transit:
electric_carIn the future, the majority of transport is likely to still consist of automobiles, albeit ones that overwhelmingly rely on electric, hydrogen, biofuel or hybrid engines to get around. And keeping these vehicles fueled is going to be one of the more interesting aspects of future cities. For instance, electric cars will need to stay charged when in use in the city, and charge stations are not always available.

That’s where companies like HEVO Power come into play, with its concept of parking chargers that can offer top-ups for electric cars. Having teamed up with NYU Polytechnic Institute to study the possibility of charging parked vehicles on the street, they have devised a manhole c0ver-like device that can be installed in a parking space, hooked up to the city grid, and recharge batteries while commuters do their shopping.

chevy_envAnd when looking at individual vehicles, one cannot underestimate the role by played by robot cars. Already, many proposals are being made by companies like Google and Chevrolet for autonomous vehicles that people will be able to summon using their smartphone. In addition, the vehicles will use GPS navigation to automatically make their way to a destination and store locations in its memory for future use.

And then there’s the role that will be played by robotaxis and podcars, a concept which is already being put to work in Masdar Eco City in the United Arab Emirates, San Diego and (coming soon) the UK town of Milton Keynes. In the case of Masdar, the 2GetThere company has built a series of rails that can accommodate 25,000 people a month and are consistent with the city’s plans to create clean, self-sustaining options for transit.

Robotaxi_2getthereIn the case of San Diego, this consists of a network known as the Personal Rapid Transit System – a series of on-call, point to point transit cars which move about on main lines and intermediate stations to find the quickest route to a destination. In Britian, similar plans are being considered for the town of Milton Keynes – a system of 21 on-call podcars similar to what is currently being employed by Heathrow Airport.

But of course, not all future transportation needs will be solved by MagLev trains or armies of podcars. Some existing technologies – such as the bicycle – work pretty well, and just need to be augmented. Lightlane is a perfect example of this, a set of lasers and LED lights that bikers use to project their own personal bike lane from under the seat as they ride.

lightlaneAnd let’s not forget the Copenhagen Wheel, a device invented by MIT SENSEable City Lab back in 2009 to electrify the bicycle. Much like other powered-bicycle devices being unveiled today, this electric wheel has a power assist feature to aid the rider, a regenerative braking system that stores energy, and is controlled by sensors in the peddles and comes with smart features can be controlled via a smartphone app.

On top of all that, some research actually suggests that separating modes of transportation – bike lanes, car lanes, bus lanes, etc. – actually does more harm than good to the people using them. In Europe, the traffic concept known as “shared spaces” actually strips paths of traffic markings and lights, and allow walkers and drivers to negotiate their routes on their own.

transportation_tripanelShared spaces create more consideration and consciousness for other people using them, which is why the Boston architecture firm Höweler + Yoon designed the “Tripanel” as part of their larger vision for the Boston-Washington corridor (aka. “Boswash”). The Tripanel features a surface that switches among grass, asphalt, and photovoltaic cells, offering a route for pedestrians, bikers, and electric cars.

Education:
When it comes to schooling ourselves and our children, the near future is likely to see some serious changes, leading to a virtual reinventing of educational models. For some time now, educators have been predicting how the plurality of perspectives and the rise of a globalized mentality would cause the traditional mode of learning (i.e. centralized schools, transmission learning) to break down.

Classroom-of-the-Future01And according to other speculative thinkers, such as Salim Ismail – the director of Singularity University – education will cease being centralized at all and become an “on-demand service”. In this model, people will simply “pull down a module of learning”, and schooldays and classrooms will be replaced by self-directed lessons and “microlearning moments”.

In this new learning environment, teleconferencing, telepresence, and internet resources are likely to be the main driving force. And while the size and shape of future classrooms is difficult to predict, it is likely that classroom sizes will be smaller by 2030, with just a handful of students using portable devices and display glasses to access information while under the guidance of a teacher.

envisioning-the-future-of-educationAt the same time, classrooms are likely to be springing up everywhere, in the forms of learning annexes in apartment buildings, or home-school environments. Already, this is an option for distance education, where students and teachers are connected through the internet. With the addition of more sophisticated technology, and VR environments, students will be able to enter “virtual classrooms” and connect across vast distances.

According to Eze Vidra, the head of Google Entrepreneurs Europe: “School kids will learn from short bite-sized modules, and gamification practices will be incorporated in schools to incentivize children to progress on their own.” In short, education will become a self-directed, or (in the case of virtual environments) disembodied experienced that are less standardized, more fun, and more suited to individual needs.

Health:
medtechMany experts believe that medicine in the future is likely to shift away from addressing illness to prevention. Using thin, flexible, skin-mounted, embedded, and handheld sensors, people will be able to monitor their health on a daily basis, receiving up-to-date information on their blood pressure, cholesterol, kidney and liver values, and the likelihood that they might contract diseases in their lifetime.

All of these devices are likely to be bundled in one way or another, connected via smartphone or other such device to a person’s home computer or account. Or, as Ariel Schwatz of CoExist anticipates, they could come in the form of a “Bathroom GP”, where a series of devices like a Dr.Loo and Dr. Sink measure everything from kidney function to glucose levels during a routine trip.

doctor_bathroomBasically, these smart toilets and sinks screen for illnesses by examining your spittle, feces, urine and other bodily fluids, and then send that data to a microchip embedded inside you or on a wristband. This info is analyzed and compared to your DNA patterns and medical records to make sure everything is within the normal range. The chip also measures vital signs, and Dr Mirror displays all the results.

However, hospitals will still exist to deal with serious cases, such as injuries or the sudden onset of illnesses. But we can also expect them to be augmented thanks to the incorporation of new biotech, nanotech and bionic advances. With the development of bionic replacement limbs and mind-controlled prosthetics proceeding apace, every hospital in the future is likely to have a cybernetics or bioenhancement ward.

Prosthetic armWhat’s more, the invention of bioprinting, where 3-D printers are able to turn out replacement organic parts on demand, is also likely to seriously alter the field of medical science. If people are suffering from a failing heart, liver, kidney, or have ruined their knees or other joints, they can simply put in at the bioprinting lab and get some printed replacement parts prepared.

And as a final, encouraging point, diseases like cancer and HIV are likely to be entirely curable. With many vaccines that show the ability to not only block, but even kill, the HIV virus in production, this one-time epidemic is likely to be a thing of the past by 2030. And with a cure for cancer expected in coming years, people in 2030 are likely to view it the same way people view polio or tetanus today. In short, dangerous, but curable!

Buying/Selling:
future_money2When it comes to living in 2030, several trends are expected to contribute to people’s economic behavior. These include slow economic growth, collaborative consumption, 3-D printing, rising costs, resource scarcity, an aging population, and powerful emerging economies. Some of these trends are specific, but all of them will effect the behavior of future generations, mainly because the world of the future will be even more integrated.

As already noted, 3-D printers and scanners in the home are likely to have a profound effect on the consumer economy, mainly by giving rise to an on-demand manufacturing ethos. This, combined with online shopping, is likely to spell doom for the department store, a process that is already well underway in most developed nations (thanks to one-stop shopping).

sharing economy brandHowever, the emergence of the digital economy is also creating far more in the way of opportunities for micro-entrepreneurship and what is often referred to as the “sharing economy”. This represents a convergence between online reviews, online advertising of goods and services, and direct peer-to-peer buying and selling that circumvents major distributors.

This trend, which is not only reaching back in time to reestablish a bartering economy, but is also creating a “trust metric”, whereby companies, brand names, and even individuals are being measured by to their reputation, which in turn is based on their digital presence and what it says about them. Between a “sharing economy” and a “trust economy”, the economy of the future appears highly decentralized.

bitcoinFurther to this is the development of cryptocurrencies, a digital medium of exchange that relies solely on consumer demand to establish its value – not gold standards, speculators or centralized banks. The first such currency was Bitcoin, which emerged in 2009, but which has since been joined by numerous others like Litecoin, Namecoin, Peercoin, Ripple, Worldcoin, Dogecoin, and Primecoin.

In this especially, the world of 2030 is appearing to be a very fluid place, where wealth depends on spending habits and user faith alone, rather than the power of governments, financial organizations, or centralized bureaucracies. And with this movement into “democratic anarchy” underway, one can expect the social dynamics of nations and the world to change dramatically.

Space Travel!:
space_cameraThis last section is of such significance that it simply must end with an exclamation mark. And this is simply because by 2030, many missions and projects that will pave the way towards a renewed space age will be happening… or not. It all comes down to whether or not the funding is made available, public interest remains high, and the design and engineering concepts involved hold true.

However, other things are likely to become the norm, such as space tourism. Thanks to visionaries like World View and Richard Branson (the pioneer of space tourism with Virgin Galactic), trips to the lower atmosphere are likely to become a semi-regular occurrence, paving the way not only for off-world space tourism, but aerospace transit across the globe as well.

asteroid_neo_studyPrivate space exploration will also be in full-swing, thanks to companies like Google’s Space X and people like Elon Musk. This year, Space X is preparing for the first launch of it’s Falcon Heavy rocket, a move which will bring affordable space flight that much closer. And by 2030, affordability will be the hallmarks of private ventures into space, which will likely include asteroid mining and maybe the construction of space habitats.

2030 is also the year that NASA plans to send people to Mars, using the Orion Multi-Purpose Crew Vehicle and a redesigned Saturn V rocket. Once there, the crew will conduct surface studies and build upon the vast legacy of the Spirit, Opportunity and Curiosity Rovers to determine what Mars once looked like. This will surely be a media event, the likes of which has not been seen since the Moon Landing.

Mars_OneSpeaking of media events, by 2030, NASA may not even be the first space agency or organization to set foot on Mars. Not if Mars One, a nonprofit organization based in the Netherlands, get’s its way and manages to land a group of colonists there by 2023. And they are hardly alone, as Elon Musk has already expressed an interest in establishing a colony of 80,000 people on the Red Planet sometime in the future.

And Inspiration Mars, another non-profit organization hosted by space adventurist Dennis Tito, will have already sent an astronaut couple on a round-trip to Mars and back (again, if all goes as planned). The mission, which is currently slated for 2018 when the planets are in alignment, will therefore be a distant memory, but will serve as an example to all the private space ventures that will have followed.


In addition to Mars, one-way trips are likely to be taking place to other celestial bodies as well. For instance, Objective Europa – a non-profit made up of  scientists, conceptual artists, and social-media experts – plans to send a group of volunteers to the Jovian moon of Europa as well. And while 2030 seems a bit soon for a mission, it is likely that (if it hasn’t been scrapped) the program will be in the advanced stages by then.

NASA and other space agencies are also likely to be eying Europa at this time and perhaps even sending ships there to investigate the possibility of life beneath it’s icy surface. Relying on recent revelations about the planet’s ice sheet being thinnest at the equator, a lander or space penetrator is sure to find its way through the ice and determine once and for all if the warm waters below are home to native life forms.

europa-lander-2By 2030, NASA’s MAVEN and India’s MOM satellites will also have studied the Martian atmosphere, no doubt providing a much fuller picture of its disappearance. At the same time, NASA will have already towed an asteroid to within the Moon’s orbit to study it, and begun constructing an outpost at the L2 Lagrange Point on the far side of the Moon, should all go as planned.

And last, but certainly not least, by 2030, astronauts from NASA, the ESA, and possibly China are likely to be well on their way towards the creation of a permanent outpost on the Moon. Using a combination of 3-D printing, robots, and sintering technology, future waves of astronauts and settlers will have permanent domes made directly out of regolith with which to conduct research on the Lunar surface.

ESA_moonbaseAll of these adventures will help pave the way to a future where space tourism to other planets, habitation on the Moon and Mars, and ventures to the asteroid belt (which will solve humanity’s resource problem indefinitely), will all be the order of the day.

Summary:
To break it all down succinctly, the world of 2030 is likely to be rather different than the one we are living in right now. At the same time though, virtually all the developments that characterize it – growing populations, bigger cities, Climate Change, alternative fuels and energy, 3-D printing, cryptocurrencies, and digital devices and communications – are already apparent now.

Still, as these trends and technologies continue to expand and are distributed to more areas of the world – not to mention more people, as they come down in price – humanity is likely to start taking them for granted. The opportunities they open, and the dependency they create, will have a very deterministic effect on how people live and how the next generation will be shaped.

All in all, 2030 will be a  very interesting time because it will be here that so many developments – the greatest of which will be Climate Change and the accelerating pace of technological change – will be on the verge of reaching the tipping point. By 2050, both of these factors are likely to come to a head, taking humanity in entirely different directions and vying for control of our future.

Basically, as the natural environment reels from the effects of rising temperatures and an estimated CO2 concentration of 600 ppm in the upper atmosphere, the world will come to be characterized by famine, scarcity, shortages, and high mortality. At the same time, the accelerating pace of technology promises to lead to a new age where abundance, post-scarcity and post-mortality are the norm.

So in the end, 2030 will be a sort of curtain raiser for the halfway point of the 21st century, during which time, humanity’s fate will have become largely evident. I’m sure I’m not alone in hoping things turn out okay, because our children are surely expecting to have children of their own, and I know they would like to leave behind a world the latter could also live in!

Sources: fastcoexist.com, (2), (3), cnn.com, designtoimprovelife.dk, un.org

2014’s Master To-Do List

Colourful 2014 in fiery sparklersWith this year in full swing and the events of 2013 now a memory, I thought it was high time to take stock of everything I need to do in the coming twelve months. As always, I got a lot of projects in the works and plenty of things I want to get done, some of which I was supposed to be finished with already. And I seem to recall mentioning a few of these items in the course of my New Year’s resolutions…

So here goes…

1. Finish Editing Papa Zulu and Release It:
Now this is one I’ve been letting linger for quite some time! Originally, I had hoped to have this book ready a year ago, but editing has proven to be a more arduous process than previously expected. However, I got my trusty and professional editor (hi Leslie!) in my corner, and she’s editing both it and Whiskey Delta. So sometime before the Spring season hits us, I plan to release the one and re-release the other. It will be a kind of one-two, launch/relaunch combo!

2. Edit Fast Forward and Release it:
Back in April of 2013, I penned a number of short stories for the A to Z Challenge. Since that time, I’m coalesced the best stories, added a few extras from over the years, and created a volume of futuristic tales that I named “Fast Forward”. And with my membership over at Shutterstock.com, I also prepped a new and eyepopping cover that I think will get some attention once its published. But before that can happen, I need to go through it again and make sure its all cleaned up.

FlashForward_2

3. Bring Yuva Anthology to Completion:
Khaalidah and I – a friend and fellow indie writer over at Writer’s Worth – started this anthology of space travel and colonization two years ago. At first, we found ourselves joined by several friends and respected colleagues who also wanted to see the project come to fruition. But after several months of initial progress, things began to slow down and linger.

But I’m pleased to say that in the past few weeks, things have really picked up again. Owing to a full-court press to recruit new talent, we have just about all our stories accounted for and I’m waiting for drafts from all the participants. It would be really nice if we could get this book – a tribute to Ray Bradbury and a tale that is more relevant than ever now – finished by the end of the year.

Yuva_cover

4. Finish Reading List and Review Them:
Yeah, my reading list is, as always glutted and filled with stuff I was supposed to have finished a long time ago. It seemed to take me forever to finish reading World War Z: An Oral History of the Zombie War, by Max Brooks. And now that that’s finished, I am hoping to finish the last three books that I have started but not finished, and then move on to the many other novels on my nightstand.

These books include Accelerando by Charles Stross, a story about this century that is required reading for anyone trying to write about the Technological Singularity; We by Yevgeny Zamyatin, the quintessential dystopian tale about social engineering, failed utopias, and the inspiration behind such classics as 1984 and (arguably) Brave New World. And last, but certainly not least, The Quiet Game: Five Tales To Chill Your Bones by Rami Ungar.

we_zamyatinAnd when I’m done all those books, which I’ve been reading simultaneously and in bursts, I can move on to Ready Player One, The Giver, and Back To The Front, an account of one man’s walking tour of the battlefields of World War I. Hey, I don’t just deal in science fiction, you know!

And with all that done and put away with, maybe the wife and I can finally find a bigger place, which is something we’ve been working on for some time. And of course, there will be the walking tour that we will be doing with my family this coming April. I need to do some research to prepare for that, and you can bet your bottom dollar you’ll be hearing about it too!

So yeah, 2014 is shaping up to be an eventful year. I hope it proves to be as productive and enjoyable as I hope, and that you all get what you want from it as well. Take care and Happy New Year!